Количество люмен в лампе и ее световой поток
Вокруг понятия «люмен» возникает множество мифов, поэтому, чтобы развеять некоторые из них, рассмотрим наиболее часто задаваемые вопросы, вроде таких, как: сколько люмен в лампе накаливания, в светодиодной лампе, сколько люмен содержит 1Вт светодиодной лампы, как определить ее световой поток, и какие светодиодные лампы аналогичны лампам накаливания.
Для начала разберемся, что подразумевает под собой понятие «люмен». Люмен является единицей измерения светового потока, исходящего от источника света, которым может быть лампа накаливания, светодиодная лампа, светодиод или другой осветительный прибор.
Чтобы проще было проводить сравнительный анализ, можно обратиться к таблице, где приведены соотношения СП (люмен) к мощности осветительного прибора (Вт) для ламп накаливания, люминесцентных и светодиодных ламп. Исходя из этих данных, видно, что светодиодные лампы в 10раз эффективнее, чем лампы накаливания, и в 2раза – чем люминесцентные. К тому же, в отличие от люминесцентных ламп и ламп накаливания, светодиодная лампа, следовательно, и светодиод, испускает направленный свет, из чего можно заключить, что и освещенность от светодиодной лампы будет значительно выше. Поэтому, используя светильник светодиодный уличный в качестве освещения, можно достичь гораздо лучшей освещенности, чем при использовании других ламп.
Лампа накаливания, |
Люминесцентная лампа, |
Светодиодная лампа, |
Световой поток, Лм |
20 Вт |
5-7 Вт |
2-3 Вт |
Около 250 Лм |
40 Вт |
10-13 Вт |
4-5 Вт |
Около 400 Лм |
60 Вт |
15-16 Вт |
8-10 Вт |
Около 700 Лм |
75 Вт |
18-20 Вт |
10-12 Вт |
Около 900 Лм |
100 Вт |
25-30 Вт |
12-15 Вт |
Около 1200 Лм |
150 Вт |
|
18-20 Вт |
Около 1800 Лм |
200 Вт |
60-80 Вт |
25-30 Вт |
Около 2500 Лм |
Что касается количества люмен в 1Вт светодиодной лампы.
У светодиодов световой поток колеблется от 80 до 150Лм из 1Вт. Это обуславливается некоторыми отличиями вольтамперных характеристик светодиодов и систем охлаждения. Световой поток экспериментальных светодиодов доходит до 220Лм/Вт, но такие светодиоды не встречаются в массовом производстве.
Как можно определить количество люмен в светильнике или лампочке.
Обычно эта информация указана на упаковке или в инструкции к товару, но можно воспользоваться и табличными данными.
Для самостоятельного определения люменов нужен люксметр, определяющий уровень освещенности на каждом участке помещения. Люкс в данном случае – это количественное отношение люмен на площадь освещения (1люкс-1люмен на м2). При силе света, исходящего от изотропного источника, равного 1 кандела, полный световой поток равен 4
Светильник с лампой ДРЛ |
Светильник с лампой Днат |
Светодиодный светильник |
Световой поток, Лм |
125 Вт |
70 Вт |
30-40 Вт |
Около 3 500 Лм |
250 Вт |
100 Вт |
40-60 Вт |
Около 8 000 Лм |
400 Вт |
150 Вт |
80-120 Вт |
Около 12 000 Лм |
700 Вт |
250 Вт |
140-160 Вт |
Около 20 000 Лм |
1000 Вт |
400 Вт |
180-200 Вт |
Около 30 000 Лм |
Факты о регулировании яркости. Регулировка яркости: будущее и настоящее
Настоящая статья посвящена прямому фазовому регулированию яркости в светодиодных осветительных системах. В нашу задачу не входит рассмотрение широкого ассортимента сетевых систем — в частности, DMX, DALI, управляющих сетей на диапазоны напряжений 0-10 или 1-10 В постоянного тока и театральных систем. Главным образом это обусловлено наличием большого количества литературы по использованию светодиодной аппаратуры в сетевом регулировании, а вот повсеместно распространенным одно-канальным настенным регуляторам, на долю которых приходится свыше 95% существующей бытовой и промышленной инфраструктуры регулирования яркости, внимания уделяется недостаточно. Те, кому знакома данная тематика, осведомлены о необходимости корректировать коэффициент мощности, обеспечивать высокий КПД и стабильную работу, но трудности, сопряженные с достижением этих целей, не слишком хорошо изучены.
Одноканальные фазовые регуляторы яркости весьма популярны. По данным исследований, проведенных почти девять лет назад, только в США насчитывалось 4 млрд ламп накаливания и свыше 150 млн традиционных регуляторов яркости. По прогнозам, их количество в бытовых и промышленных зданиях еще долго будет продолжать увеличиваться. Этот рост обусловлен двумя причинами: во-первых, желанием улучшить эстетику помещений, а во-вторых, возможностью сэкономить энергию за счет снижения яркости. Правительства различных стран мира, основываясь на экологических соображениях, движутся к законодательному запрету традиционных ламп накаливания и флуоресцентных ламп, а светодиодные лампы, которые придут им на смену, будут устанавливаться в те же самые патроны. Последнее обстоятельство необходимо подчеркнуть, так как с наибольшей вероятностью в конкретной осветительной системе будет заменяться тот светильник, который важнее всего для потребителя, а многие из таких светильников подключены через одноканальный регулятор яркости того или иного рода. Традиционный настенный регулятор, нагрузкой которого служит лампа накаливания, работает плавно и имеет привлекательный внешний вид. Он эстетичен и недорог в изготовлении. Такова планка, которую должны взять, а впоследствии и перешагнуть разработчики регуляторов яркости светодиодных светильников, чтобы их в полной мере приняли конечные потребители.
К сожалению, зачастую светодиодные светильники с регулированием яркости не отличаются столь высокими потребительскими качествами, и даже существенная экономия электроэнергии не делает их привлекательными для пользователей. Критерии стандарта Energy Star (США) предписывают поставщикам светодиодных ламп предоставлять списки совместимых регуляторов яркости, что служит достаточным доказательством далеко не идеальной совместимости таких ламп с традиционными инструментами управления.
В настоящее время используется два основных типа фазовых регуляторов яркости (принцип действия которых основан на вырезании определенных участков каждого полупериода переменного тока): переднефрон-товые (LEDIM) и заднефронтовые (TEDIM) (рис. 1а-в). LEDIM популярны главным образом в Северной Америке, TEDIM — в странах ЕС и остальном мире; предполагается, что они лучше работают с низковольтными галогенными лампами, оснащенными электронными трансформаторами. В переднефронто-вых регуляторах в качестве активных элементов обычно используются симметричные тиристоры (тринистор или тринистор/ динистор), а устройство заднефронтовых регуляторов обычно сложнее, и активными элементами в них служат полевые МОП-транзисторы или БТИЗ. Можно сказать, что у LEDIM активным является выключенное состояние, а у TEDIM — включенное (относительно начала полупериода). Амплитуда выбросов и результирующий уровень высокочастотных шумов у заднефронтового регулятора несколько меньше (радиочастотные шумы и ЭМП в активном состоянии), так как он выключается, а не включается.
Рис. 1. Фазовые регуляторы яркости. Эффективное регулирование яркости светодиодных ламп
В общем случае для осветительной аппаратуры, включая светодиодные светильники и лампы, определены четкие стандарты на электрические характеристики, расчетный срок службы, температуру и светораспределение, которые вырабатываются и продвигаются сторонними сертифицирующими организациями. В число таких стандартов входят IES LM-79 и LM-80 (современное название, используемое Министерством энергетики США, — Energy Star). Однако аналогичные стандарты на фактические характеристики регулирования в рабочем диапазоне отсутствуют.
За практический образец в отрасли по-прежнему принимается поведение типичного регулятора с нагрузкой в виде лампы накаливания. Его характеристика представляется наиболее «правильной» для психовизуального восприятия среднестатистического пользователя в части относительной линейности и плавности работы. Такому плавному регулированию без мерцания способствует тепловая инерция нити накаливания и инерционность человеческого зрения. В действительности соотношение между выходной мощностью излучения лампы и зрительной реакцией человека при уменьшении яркости лампы накаливания с номинальной до нулевой представляет собой логарифмическую кривую. Но многие светодиодные светильники при уменьшении яркости могут полностью гаснуть уже на уровне 10-20% по шкале регулирования ввиду практических ограничений, налагаемых требованиями к минимальному напряжению источника питания. Более того, при низких уровнях мощности диапазон регулирования может содержать переходный участок, в котором наблюдается мерцание или видимое ступенчатое изменение яркости, обусловленное увеличением шага регулирования, как это происходит в стандартной системе с ШИМ. В действительности шаг ШИМ-регулирования везде одинаков, но нашему зрительному восприятию он представляется растущим (сравнение между воспринимаемым уровнем освещенности и абсолютной мощностью или абсолютным уровнем освещенности, рис. 12). В сравнении с идеалом такое поведение регулятора отвлекает и представляется неприемлемым.
Возьмем для примера рестораны. Это типичные пользователи регуляторов яркости: нормой в ресторанах является приглушенный свет с яркостью около 20% от максимальной, создающий традиционную «интимную» атмосферу. Рестораны используют практически театральный подход, устраивая зоны высокого яркостного контраста за счет тусклого фона между столиками и ярких островков света, которые создаются стоящими на столиках лампами или свечами. После закрытия и во время рабочего дня им также может потребоваться максимально яркое освещение для уборки и подготовки к новому дню. Еще один пример — кинотеатры. На них распространяются нормы безопасности, предписывающие четкие минимумы и максимумы освещенности, а также строительные нормы и правила. Именно в этой «нормальной» зоне малой яркости начинают проявляться недостатки ШИМ-регулирования, когда кончается запас по разрядам и начинаются крупные ступенчатые переходы, приводящие к мерцанию и резким изменениям яркости свечения (рис. 2).
Рис. 2. Разрешение ШИМ в нижней части диапазона регулирования
Наиболее элегантным решением является интеллектуальное линейное регулирование яркости. Этот метод отличается совместимостью со всеми типами и марками регуляторов, а также значительно упрощает соблюдение норм стандарта Energy Star за счет возможности плавного управления яркостью во всем диапазоне. В настоящее время стандарт Energy Star не содержит никаких конкретных указаний, кроме требования привести список марок и моделей совместимого оборудования. Преимущество одного такого собственнического подхода, предлагаемого компанией Light-Based Technologies, состоит в возможности программного масштабирования отклика лампы, которое обеспечивает более точное и повторяемое регулирование на конкретном участке диапазона. Смена режимов при использовании обыкновенного регулятора яркости от стороннего производителя достигается за счет регистрации изменения параметров регулятора при коротких, повторяющихся или конкретных перемещениях его органа управления. Например, быстрое движение вверх и вниз за время менее одной секунды переводит устройство в другой фиксированный режим работы — режим B (40% от максимальной яркости в максимальном положении ручки регулятора или при полном обороте ручки по часовой стрелке и против нее). На рис. 3 показано, как включение этой фирменной функции увеличивает разрешающую способность на нижнем участке таким образом, что нижние 20-50% диапазона регулирования распределяются по всему диапазону положений электромеханического органа управления (роль которого может исполнять поворотный или движковый потенциометр, емкостной датчик или сенсорный интерфейс). Работа этой функции не зависит от типа используемого входного устройства или регулятора. Она обеспечивает гораздо более точное управление в случаях, когда обычным является малый уровень яркости.
Рис. 3. Растянутый диапазон регулирования
Еще один класс решений, связанных с рациональным линейным регулированием яркости, предполагает наличие нескольких характеристических кривых, в том числе логарифмической, линейной и заданной пользователем. Выбор требуемой характеристики производится так, как описано в предыдущем абзаце. На рис. 3 показаны три S-образные характеристические кривые с разными максимальными уровнями яркости, воспроизводящие поведение лампы накаливания. Например, режим C лучше всего подойдет для использования в ресторанах во время рабочего дня, а режим A — для уборки после закрытия и утренней подготовки. Режим C позволит создать в заведении желаемую атмосферу, манипулируя уровнями освещенности.
Привлекательная особенность линейного регулирования — меньший ток в том же диапазоне напряжений, чем при широтно-импульсной модуляции, которая работает за счет изменения коэффициента заполнения, а следовательно, и среднего тока. Итогом является более низкое энергопотребление, больший КПД и меньшее прямое напряжение (рис. 4).
Рис. 4. Вольт-амперная характеристика (ВАХ)
Рис. 5. Сравнение световой отдачи для линейного и ШИМ-регулирования при низких уровнях электрической мощности (данные по светодиодам Luxeon Rebel)
Интеллектуальное линейное регулирование как общий метод имеет и другие преимущества, особенно применительно к изменению яркости на низких уровнях. Хорошо известный эффект «просадки» эффективности излучения светодиода, возникающий при больших значениях тока, в данном случае отсутствует благодаря реальному снижению мгновенных значений тока через р-п-переход. Это существенное улучшение: оно соответствует 30-40%-ному приросту общего светового выхода на нижнем участке диапазона регулирования яркости лампы (рис. 6). Данный режим работы отличается также большей экономичностью за счет самых низких уровней яркости в сравнении с традиционными режимами ШИМ-регулирования.
Рис. 6. Преимущество линейного регулирования на вторичной стороне
На рис. 5 представлен более конкретный анализ КПД. Он четко демонстрирует разницу в общей световой отдаче типичного светодиода Luxeon Rebel в случае линейного и ШИМ-регулирования при типовом пониженном уровне электрической мощности, равном 20%. Влияние просадки тока на общую световую отдачу светодиода здесь значительно более выражено (в предположении постоянной температуры р-п-перехода). В обеих системах установлен эффективный уровень электрической мощности 20%, но при этом световая отдача системы с линейным регулированием (коэффициент заполнения 100%, ток 150 мА) оказывается на 30% выше, чем у системы с ШИМ-регулированием (коэффициент заполнения 20%, ток 750 мА).
Линейное регулирование
В большинстве импульсных источников питания и схем управления светодиодами первичная и вторичная стороны (последних может быть несколько) электрически/физически отделены друг от друга трансформатором или обратноходовым дросселем.
Почти все крупные компании — производители полупроводниковых компонентов, производящие ИС источников питания и управления светодиодами, используют одну и ту же технику регулирования — а именно регулирование на первичной стороне. Однако прямое управление на вторичной стороне для таких компонентов обладает множеством практических преимуществ, что демонстрирует технология LB4 компании Light-Based Technologies.
На рис. 6 можно видеть, что при топологии с ШИМ-регулированием воспринимаемая яркость свечения составляет 20% при фактической мощности 5%. Подход с линейным регулированием позволяет добиться близкой к нулю воспринимаемой яркости свечения при уменьшении фактической мощности до нуля. Это позволило бы на практике реализовать диапазон регулирования от 100 до 10%, который обычно заявляется в технических характеристиках ШИМ-регуляторов.
Очевидно, что соотношение между измеренным значением светового выхода и воспринимаемой яркостью достаточно линейное, со значением показателя 0,5 в формуле степенного закона Стивенса. Также компания Light-Based Technologies применяет метод, предусматривающий передачу актуальной управляющей информации с первичной стороны на вторичную, что обеспечивает возможность регулирования с малой задержкой или в реальном масштабе времени (в отношении данного метода подана заявка на патент). Контроллер с прямой нагрузкой на вторичной стороне также позволяет точно устанавливать ток нагрузки и минимальное напряжение, причем только когда это необходимо. Рис. 7 демонстрирует, в частности, повышенное разрешение в нижней части диапазона регулирования и меньшую потребную емкость вследствие более совершенного регулирования. Двум известным производителям ИС контроллеров удалось достичь цифры 0,1%: в одном случае путем использования конденсаторов большой емкости с их малым временем наработки на отказ, большой стоимостью и размерами, а в другом — за счет отказа от соблюдения требований гальванической развязки.
Рис. 7. Сравнительные преимущества линейного регулирования яркости
Ток удержания регулятора
Еще один фактор, который необходимо учесть для достижения совместимости регуляторов, заключается в том, что все передне-фронтовые регуляторы на симметричных тиристорах (LEDIM) требуют определенного тока удержания, который обусловлен внутренней архитектурой и характеристиками их электронных компонентов. Иными словами, они полностью выключаются, когда через них прекращает течь ток, из-за чего свет мерцает или даже гаснет на протяжении этого периода (в зависимости от того, способна ли схема управления произвести перезапуск). Это, разумеется, происходит периодически — каждый раз, когда кривая переменного напряжения входит в окрестность нуля или покидает ее.
Во многих конструкциях ток удержания может создаваться простой низкоомной ре-зистивной нагрузкой, но пропускание фиксированного тока на протяжении всего периода приводит к нерациональному расходованию энергии. По-настоящему эффективным будет такой формирователь тока удержания, который включается только при недостаточном токе нагрузки, в конкретный момент времени и на необходимый минимум, определяемый потребным током нагрузки и регулятора. Для рационального выполнения этих функций требуется схема с динамическим и периодическим характером работы — например такая, как формирователь тока удержания компании Light-Based Technologies. Это практичное решение, поскольку потребный ток удержания тиристоров существенно варьируется в зависимости от номинальной мощности тиристора, колебаний свойств полупроводниковых материалов и внутренней конструкции компонента конкретного производителя.
На рис. 8 показаны результаты моделирования в программе SPICE, демонстрирующие динамический и периодический характер работы схемы компании Light-Based Technology. Фактическое значение динамического тока удержания (ток через R42) определяется как требованиями нагрузки, так и характеристиками конкретного тиристорного или полупроводникового регулятора. Участок рабочего цикла примерно с 8 до 11 мс характеризуется достаточно низким импедансом и очень малым током, чтобы соблюсти требования симметричного тиристора к минимальному току удержания. На верхнем рисунке для ориентировки показана полуволна переменного напряжения переднефронтового регулятора при уровне 25% по шкале регулирования (измерение производилось за мостовым выпрямителем, но до фильтра).
Рис. 8. Динамическое регулирование тока удержания
Заднефронтовым регуляторам (TEDIM) также требуется ток удержания, но по другим причинам. Роль активных компонентов в них обычно играют полевые МОП-транзисторы и БТИЗ. Эти устройства также перестают работать правильно при отсутствии на них напряжения (что происходит на протяжении каждого периода сигнала). Выключение происходит по слегка наклонной кривой, а не почти мгновенно. Поэтому в отсутствие тока удержания качество регулирования ухудшается, что опять-таки приводит к необходимости динамически регулировать ток удержания для обеспечения плавной работы и максимального КПД.
КПД
Каждый элемент светодиодной осветительной системы имеет свой КПД, и на сегодня значение в 100% является недостижимым. Энергия теряется в каждом компоненте, в том числе в схеме управления светодиодами или источнике питания, в самом светодиоде, в оптике (линзах или светорассеивателях), отражателях (если они используются). Плохое регулирование тепловых режимов может вызывать постепенное изменение (как правило, в сторону понижения) светового выхода в самом зазоре светодиода.
Соответственно, при увеличении КПД любого из этих компонентов даже на единицы процентов общий его прирост оказывается значительным. Разница в стоимости технических решений и относительная незрелость технологий и рынка светодиодных светильников как никогда мотивирует инженеров на внесение как можно большего количества усовершенствований — сильнее, чем в случае скромных светильников на лампах накаливания и люминесцентных лампах, ныне стремительно уходящих в прошлое.
В общем случае КПД источника питания или схемы управления светодиодом может быть выражен следующим образом:
W = Рвых/Рвх или W = (V * Iвых)/( V*Iвх)
Простейшая формула КПД [%] схемы управления светодиодом такова:
КПД = (Рвых *100)/Pвх.
Световая отдача светодиода выражается в лм/Вт, световой поток — в лм. Показатель преломления п и общий коэффициент прозрачности линзы t [%] выражаются следующим образом:
п = скорость света в вакууме/скорость света в среде;
t = световой поток (вых.) * 100/световой поток (вх.).
КПД отражателя определяется следующим выражением:
световой поток пад. (вых.) * 100/световой поток пад. (вх.).
КПД системы необходимо рассматривать во всем диапазоне регулирования яркости. Нормируется ли КПД в современных тиристорных регуляторах, используемых в светодиодных светильниках и схемах управления светодиодами? Хороший вопрос! В регуляторах старого образца применяются диссипативные резистив-ные элементы, а современные регуляторы (в особенности на полевых МОП-транзисторах) больше похожи на управляемые переключатели. Но ничего идеального не бывает, и все компоненты имеют определенное эквивалентное последовательное сопротивление, на котором происходят тепловые потери. Во время нормальной работы регуляторы яркости становятся теплыми на ощупь. КПД фазового регулятора обычно составляет около 99%. Оставшийся процент рассеивается в регуляторе в виде тепла. Таким образом, регулятор с нагрузкой 600 Вт будет выделять около 6 Вт тепла, а с нагрузкой 1 кВт — около 10 Вт. Стандартами UL/CSA нормируется предельная температура поверхностей, на которых рассеивается это тепло; обычно она равна 60 °C (140 °F).
Важность коэффициента мощности
В идеале под коэффициентом мощности понимается просто степень синфазности напряжения на нагрузке и потребляемого нагрузкой тока в каждом полупериоде синусоидального сигнала. Их фазы должны совпадать, как на чисто активной нагрузке. Коэффициент мощности определяется как отношение активной мощности к полной мощности. В зависимости от «типа» нагрузки ток на ней может опережать напряжение или отставать от него (рис. 9).
Рис. 9. Пример случая, когда ток нагрузки опережает напряжение на нагрузке
Обе разновидности регуляторов яркости (будь то с линейной, нелинейной, комбинированной или сложной нагрузкой) оказывают сильное влияние на коэффициент мощности: обычно они обрезают фазу напряжения на пике мощности, как того требует нагрузка, за счет чего в сети переменного тока возникают рассогласование и гармонические нелинейные искажения (рис. 10).
Рис. 10. Искажение коэффициента мощности, вызванное нелинейной или сложной нагрузкой
Искажение коэффициента мощности (DPF) — это мера уменьшения средней мощности, передаваемой на нагрузку, вследствие гармонических искажений тока. Оно определяется по следующей формуле:
DPF = 1/√(1 + THD2i) = I1 rms/Irms.
Здесь THD, — суммарный коэффициент гармоник. Данное определение предполагает, что форма напряжения не искажается (оно остается синусоидальным без гармоник). Такое упрощение является зачастую хорошим практическим приближением. Il rms — среднеквадратичная амплитуда основной частоты тока, а Irms — среднеквадратичный полный ток. Умножив их отношение на величину искажения коэффициента мощности, получаем истинный коэффициент мощности (PF):
PF = DPF * (I1 rms/Irms)
Искажение коэффициента мощности редко имеет какие-либо ощутимые последствия для бытовых пользователей, но для промышленных пользователей оно может выливаться в дополнительные расходы на оплату электроэнергии. Например, если нагрузка имеет резко индуктивный характер, может возникнуть необходимость в установке коммутируемой батареи конденсаторов для компенсации потерь мощности. На уровне жилого фонда энергосбытовым компаниям приходится тратить средства на оборудование и дополнительную мощность для исправления этого дисбаланса в масштабах всей распределительной системы.
Схемы управления светодиодами и импульсные источники питания считаются нелинейными или сложными нагрузками и требуют коррекции коэффициента мощности для уменьшения создаваемых ими нелинейных искажений тока с образованием избыточной энергии на гармониках промышленной частоты (рис. 10).
Содержание гармоник и основные требования к коррекции коэффициента мощности для всех импульсных источников питания регулируются европейским стандартом EN61000-3-2. Пассивная коррекция коэффициента мощности в схемах управления светодиодами и источниках питания обычно реализуется с помощью дополнительных конденсаторов, резисторов и управляющих диодов (цепи «заполнения впадин»). Активная коррекция коэффициента мощности достигается также путем перераспределения тока в полупериоде волны напряжения. Суть решаемой задачи — в том, как улучшить стабилизацию на нагрузке без снижения коэффициента мощности или сделать нагрузку эквивалентной линейному резистору. Обычно для этого применяется двухкаскадная топология источника или схемы управления (повышающая, понижающая или понижающе-повышающая).
В настоящее время компания Light-Based Technologies разрабатывает новую конструкцию источника питания/схемы управления светодиодами, в которой используется принципиально новая топология для уменьшения искажений коэффициента мощности и повышения КПД.
Мощность и воспринимаемая яркость свечения
Соотношение между фактическим и воспринимаемым уменьшением яркости свечения имеет логарифмический характер (рис. 11). Уменьшение яркости до 25% от максимальной воспринимается человеком примерно как половинное и т. д. Однако в нижних 3-5% диапазона регулирования, приходящихся на последний небольшой участок рабочего диапазона движкового или поворотного потенциометра, снижение яркости происходит отнюдь не идеально. Регулирование в узком диапазоне едва воспринимается глазом. Аналогичную природу имеет человеческий слух: чтобы слушатель ощутил изменение громкости, необходимо относительно большое изменение фактической мощности звука. Современные светодиодные лампы, предназначенные для установки в традиционные осветительные системы, с трудом обеспечивают приемлемые для массового рынка яркость и качество освещения. Многое еще остается сделать для того, чтобы повысить планку яркости, мощности, КПД и эффективности регулирования тепловых режимов до уровня, пригодного для коммерциализации. Хорошая новость состоит в том, что прогресс на этом пути по-прежнему идет, и компания Light-Based Technologies считает за честь быть на переднем крае инноваций в этой интереснейшей сфере.
Рис. 11. Воспринимаемый уровень яркости и абсолютный уровень мощности/яркости
С чисто прагматической точки зрения регулирование яркости светодиодного освещения позволяет экономить деньги за счет нескольких факторов. В частности, это непосредственное снижение энергопотребления и затрат на обслуживание и замену, что продлевает срок службы самого светильника. Любой регулятор по сравнению с обычным двухпози-ционным выключателем автоматически экономит 4-9% электроэнергии даже при максимальной яркости. А если пользователь приглушает свет, экономия возрастает. Ввиду своих динамических характеристик тиристоры не включаются точно в момент пересечения нуля сигналом переменного тока, поэтому даже при полном открытии происходит небольшое урезание фазы до достижения порогового напряжения.
Эстетические требования к высококачественному регулятору яркости светодиодной лампы таковы: управляемый диапазон регулирования, программируемая кривая регулирования, плавные переходы, хороший пуск и прогрев, стабильная яркость во всем диапазоне регулирования, стабильная цветность или программируемая цветовая коррекция в процессе регулирования, низкий уровень акустических шумов и ЭМП, гибкость управления/пользовательского ввода, малые искажения коэффициента мощности и приятное для пользователя всестороннее управление цветностью.
Технические требования к высококачественному регулятору яркости светодиодной лампы: широкий рабочий диапазон входных переменных напряжений, широкий диапазон приемлемых форм входного сигнала, как можно более высокий КПД, отсутствие мерцания и ступенчатых переходов в нижней части диапазона регулирования, отсутствие резкого погасания света, плавное регулирование в диапазоне 0-100%, малый уровень нелинейных искажений (THD), малые искажения коэффициента мощности, низкий уровень ЭМП и радиочастотных шумов, работа при минимальном напряжении, стабилизация тока и малый бросок пускового тока.
Регулирование яркости светодиодных ламп, так же как и менее эффективных люминесцентных, — непростая задача. Однако тщательное проектирование позволяет добиться характеристик регулирования, свойственных традиционным фазовым регуляторам яркости ламп накаливания.
Примечание. Оригинал статьи опубликован на сайте www.led-professional.com.
Меняем ватты на люмены: советы по выбору светодиодных ламп — Новости
Замена традиционных ламп накаливания на энергосберегающие станет первым шагом на пути к экономии потребления электроэнергии. Большинство людей уже заменили привычные всем лампы на люминесцентные и светодиодные (LED). Последние являются самым экономичным и эффективным источником света, несмотря на высокую стоимость.
Преимущества светодиодов очевидно превышают единственный минус цены:
- До 90% преобразования в свет полученной энергии;
- Максимальная яркость сразу при включении;
- Очень низкое энергопотребление;
- Без содержания токсичных веществ;
- Устойчивы к тряске и вибрации;
- Срок службы до 50000 ч;
- Гарантийный срок до трех лет.
Люмен (Лм, Lm) – это единица измерения светового потока, иными словами, количества света испускаемого лампой. Чем выше значение Лм, тем ярче лампочка. Среднее значение для 1 Вт светодиода составляет приблизительно 80-100 Лм. Ориентируясь на этот показатель можно легко подобрать необходимый аналог.
Так например, если необходимо заменить лампу накаливания на 15 Вт — нужно искать светодиодную, которая будет давать от 80 до 200 люменов (примерно 1-2 Вт светодиодной лампы).
-
Лампа накаливания
Лампа светодиодная
Световой поток
15 Вт
1-2 Вт
80 — 200 Лм
20 Вт
2-3 Вт
200 — 250 Лм
25 Вт
3-4 Вт
250 — 300 Лм
40 Вт
4-5 Вт
300 — 600 Лм
60 Вт
7-10 Вт
600 — 800 Лм
75 Вт
10-12 Вт
800 — 1200 Лм
100 Вт
12-15 Вт
1200 — 1400 Лм
150 Вт
18-20 Вт
1400 — 2200 Лм
200 Вт
25-30 Вт
2200 — 3100 Лм
Не стоит забывать о том, что в Люменах измеряется все количества света от точечного источника. В расчет производительности и оценки яркости не берется сфокусированная эффективность луча светильника. У рассеянного луча может быть тот же показатель Люмен, что и у сосредоточенного. С люменами тесно связана единица измерения освещенности — Люкс (Лк). Отношение между двумя показателями: 1 Лк = 1 Лм на 1 кв.м. Так например, если на 1 кв.м. направить 200 Лм, то освещенность этой области составит 200 Лк. Если же сосредоточить 200 Лм на 10 кв.м., то освещенность площади выйдет в 20 Лк.
Помимо параметра площади, учитываются и санитарные нормы, определяющие уровень освещенности для помещений различного типа.
Для удобства, можно наглядно рассмотреть самые распространенные помещения:
-
Тип помещения (предназначение)
Нормы освещенности в соответствии с действующими СНиП, Лк
Жилая комната
150
Детская комната
200
Кухня
150
Прихожая, коридор, холл
50
Гардеробная
75
Кабинет, библиотека, мастерская
300
Душевая, санузел, ванная комната
50
Сауна, бассейн
100
Спортивный, тренажерный зал
150
Технические помещения
20
На упаковке каждого изделия указана информация по количеству выдаваемого света, параметры лампы, тип цоколя, тип колбы, цвет свечения. Прежде чем купить светодиодную лампу, необходимо знать какой цоколь у светильника, Е27 или Е14. А так же учесть предпочтения цветовой температуры — теплый белый свет от 2800К до 3500К, нейтральный белый свет от 4500К до 5500К, холодный свет от 5500К до 7000К. Желтоватый теплый свет способствует расслаблению и подойдет для спальни, зоны отдыха. Синеватый холодный свет бодрит, держит в тонусе, поэтому такой цвет свечения отлично подойдет для рабочей зоны, мастерской или кабинета.
Ознакомится с ассортиментом светодиодных ламп можно в нашем каталоге.
Для создания уютной обстановки у себя дома обратите внимание на современные управляемые светодиодные светильники.
Приятных Вам покупок!
Калькулятор люмены в канделы и канделы в люмены, энергия света Ватты
См. также: Оценка максимума эффективности белого света
Лю́мен (обозначение: лм, lm) — единица измерения светового потока в СИ.
Количество люмен указывает, сколько света испускает лампа во всех направлениях. Чем больше число люмен, тем больше света.
Один люмен равен световому потоку, испускаемому точечным изотропным источником, c силой света, равной одной канделе, в телесный угол величиной в один стерадиан (1 лм = 1 кд × ср). Полный световой поток, создаваемый изотропным источником, с силой света одна кандела, равен 4π люменам.
Канде́ла (обозначение: кд, cd) — единица измерения силы света в СИ (от латинского candela, свеча).
Количество кандел указывает, сколько света испускает лампа в одном направлении, в котором она светит наиболее интенсивно.
Одна кандела — сила света в данном направлении от источника монохроматического излучения с частотой 540*1012 Гц, (555 нм, зеленый цвет) имеющего интенсивность излучения в этом направлении равную 1 / 683 Вт в телесном угле равном одному стерадиану.
Калькулятор для перевода люмен в канделы
Пересчет ведется по формуле:
Fv=I*2π(1-cos(α)), где
Fv — световой поток
Iv — сила света
α — угол половинной яркости
Для расчета введите угол и силу света (световой поток). Учтите, результаты расчета зависят от оптических параметров светодиода и дают ориентировочный результат!
Световой поток типовых источников света
Приведены сравнительные параметры некоторых источников света, значения приблизительные, только для сравнительной оценки.
Тип источника света | Световой поток (люмен) | Сила света (кандел) | лм/ватт |
|
|||
Лампа накаливания 40 Вт | 415 | 35 | 10 |
Лампа накаливания 100 Вт | 1550 | 1300 | 15 |
Люминесцентная лампа 40 Вт | 2500 | 2200 | 60 |
Газоразрядная лампа 35 Вт (ксенон с учетом оптики фары) | 3000 | 15000 | 90 |
Светодиод Cree XLamp XP-L 6 Вт | 1226 | 550 | 200 |
Мощность излучения, взаимосвязь энергии света (Ватты) и светового потока (люмен)
Важным параметром для оценки энергоэффективности светодиодного излучателя считается соотношение между излучаемой мощностью и мощностью, выделяемой в виде тепла.
Излучаемый светодиодом свет, как известно, обладает определенной энергией и энергия света зависит от длины волны. Однако сила света не пропорциональна энергии светового излучения, а зависит от чувствительности человеческого глаза. Иначе говоря, сила света — это мощность светового излучения, которое доступно для восприятия человеческим глазом. Чтобы пересчитать излучаемую энергию (Ватты) в световой поток (люмены), нужно знать длину волны излучения и кривую чувствительности человеческого глаза. Нетрудно догадаться, что для монохромного излучения эта задача решается легко, а для светодиода белого цвета, необходимо еще знать спектр его излучения и выполнить довольно сложное интегрирование.
Цвет излучения |
Формула пересчета светового потока в энергию излучения |
Опт. мощность при Fv = 100 люмен, Вт |
Сила света при P = 1 Вт, лм |
|
|||
зеленый 555 нм | Р = Fv/683 Вт/лм | 0.15 | 683 |
красный 650 нм | Р= Fv/68,3 Вт/лм | 1.46 | 68.3 |
красный 625 нм | Р= Fv/222 Вт/лм | 0.45 | 222 |
синий 465 нм | Р= Fv/68,3 Вт/лм | 1.46 | 68.3 |
белый | Р= Fv/243 Вт/лм | 0.41 | 243 |
Можно оценить, что белый светодиод мощностью 1 Вт с эффективностью 100 лм/Вт излучает в виде света 0,4 Вт и 0,6 Вт рассеивает в виде тепла, а лампа накаливания из потребляемых 100 Вт излучает в видимой области спектра только 6 Вт (0,06 Вт на 1 Вт).
Энергия, потребляемая источником света от сети питания, не полностью преобразуется в излучение. Особенно это актуально для светодиодных ламп. Кроме потерь энергии в самом светодиоде, мощность теряется в преобразователе питания, часть света задерживается оптикой — отражателями, рассеивателями, линзами. При использовании светодиода с эффективностью 100 lm/Вт, эффективность лампы редко достигает 80 lm/Вт, а для наиболее распространённых изделий бывает 60-70 lm/Вт. В итоге, современные лампы массового производства примерно в 10 раз эффективнее лампы накаливания.
Светотехнические параметры и понятия. Часть 1. Справочная информация
Профессиональные светотехники и специалисты, работающие в области освещения, постоянно употребляют разные термины и определения, которые мало о чем говорят простому обывателю, но нужны для правильного описания цветового фона.
Чтобы было проще понимать, о чем идет речь, и что обозначают эти слова, мы подготовили список, объясняющий основные светотехнические термины и характеристики. Его не нужно учить наизусть, можно просто заходить на нужную страницу и освежать в памяти забытый параметр. Говорить «на одном языке» всегда проще.
Светотехнические параметры и понятия.1 — Видимое и оптическое излучение
Весь окружающий нас мир образуется видимым и оптическим излучением, сосредоточенным в полосе электромагнитных волн от 380 до 760 нм. К ней с одной стороны добавляется ультрафиолетовое излучение (УФ), а с другой инфракрасное (ИК).
УФ-лучи оказывают биологическое воздействия и применяются для уничтожения бактерий. Дозировано они используются для лечебного и оздоровительного эффектов.
ИК-лучи используются для нагрева и сушки в установках, так как в основном производят тепловое воздействие.
2 — Световой поток (Ф)
Световой поток характеризует мощность видимого излучения по воздействию на человеческое зрение. Измеряется в люменах (лм). Величина не зависит от направления. Световой поток — это самая важная характеристика источников света.
Например, лампа накаливания Е27 75 Вт имеет световой поток 935 лм, галогенная G9 на 75 Вт — 1100 лм, люминесцентная Т5 на 35 Вт — 3300 лм, металлогалогенная G12 на 70 Вт (теплая) — 5300 лм, светодиодная Е27 9,5 Вт (теплая) — 800 лм.
3 — Люмен
Люмен (лм) — это световой поток от источника света (лампы) при окружающей температуре 25°, измеренной при эталонных условиях.
4 — Освещенность (Е)
Освещенность — это отношение светового потока, подающего на элемент поверхности, к площади этого элемента. Е=Ф/А, где, А -площадь. Единица освещенности — люкс (лк).
Чаще всего нормируется горизонтальная освещенность (на горизонтальной плоскости).
Средние диапазоны освещенности: на улице при искусственном освещении от 0 до 20 лк, в помещении от 20 до 5000 лк, 0,2 лк в полнолуние в природных условиях, 5000 -10000 лк днем при облачности и до 100 000 лк в ясный день.
На картинке представлены: а — средняя освещенность на площади А, б — общая формула для расчета освещенности.
5 — Сила света (I)
Сила света — это пространственная плотность светового потока, ограниченного телесным углом. Т. е. отношение светового потока, исходящего от источника света и распространяющегося внутри малого телесного угла, содержащего рассматриваемое направление.
I=Ф/ω Единица измерения силы света — кандела (кд).
Средняя сила света лампы накаливания в 100 Вт составляет около 100 кд.
КСС (кривая силы света) — распределение силы света в пространстве, это одна из важнейших характеристик светотехнических приборов, необходимая для расчета освещения.
6 — Яркость (L)
Яркость (плотность света) — это отношение светового потока, переносимого в элементарном пучке лучей и распространяющемся в телесном угле, к площади сечения данного пучка.
L=I/A (L=I/Cosα) Единица измерения яркости — кд/м2.
Яркость связана с уровнем зрительного ощущения; распространение яркости в поле зрения (в помещении/интерьере) характеризует качество (зрительный комфорт) освещения.
В полной темноте человек реагирует на яркость в одну миллионную долю кд/м2.
Полностью светящийся потолок яркостью боле 500 кд/м2 вызывает у человека дискомфорт.
Яркость солнца примерно миллиард кд/м2, а люминесцентной лампы 5000–11000 кд/м2.
7 — Световая отдача (H)
Световая отдача источника света — это отношение светового потока лампы к ее мощности.
Η=Ф/Р Единица измерения светоотдачи — лм/Вт.
Это характеристика энергоэкономичности источника света. Лампы с высокой световой отдачей обеспечивают экономию электроэнергии. Заменяя лампу накаливания со светоотдачей 7–22 лм/Вт на люминесцентные (50–90 лм/Вт), расход электроэнергии уменьшится в 5–6 раз, а уровень освещенности останется тот же.
8 — Цветовая температура (Тц)
Цветовая температура определяет цветность источников света и цветовую тональность освещаемого пространства. При изменении температуры источника света, тональность излучаемого света меняется от красного к синему. Цветовая температура равна температуре нагретого тела (излучатель Планка, черное тело), одинакового по цвету с заданным источником света.
Единица измерения Кельвин (К) по шкале Кельвина: Т — (градусы Цельсия + 273) К.
Пламя свечи — 1900 К
Лампа накаливания — 2500–3000 К
Люминесцентные лампы — 2700 — 6500 К
Солнце — 5000–6000 К
Облачное небо — 6000–7000 К
Ясный день — 10 000 — 20 000 К.
9 — Индекс цветопередачи (Ra или CRI)
Индекс цветопередачи характеризует степень воспроизведения цветов различных материалов при их освещении источником света (лампой) при сравнении с эталонным источником.
Максимальное значение индекса цветопередачи Ra =100.
Показатели цветопередачи:
Ra = 90 и более — очень хорошая (степень цветопередачи 1А)
Ra = 80–89 — очень хорошая (степень цветопередачи 1В)
Ra = 70–79 — хорошая (степень цветопередачи 2А)
Ra = 60–69 — удовлетворительная (степень цветопередачи 2В)
Ra = 40–59 — достаточная (степень цветопередачи 3)
Ra = менее 39 — низкая (степень цветопередачи 3)
Ra он же CRI — color rendering index был разработан для сравнения источников света непрерывного спектра, индекс цветопередачи которых был выше 90, поскольку ниже 90 можно иметь два источника света с одинаковым индексом цветопередачи, но с сильно различающейся передачей цвета.
Комфортное для глаза человека значение CRI = 80–100 Ra
Читайте также:
Светодиодные светильники для офисов, школ, производств и складов
Световой поток
Характеризует мощность видимого излучения по её воздействию на глаз человека в специальных единицах – люменах [Лм]. Световой поток является важнейшей характеристикой ламп. Обычная лампа накаливания мощностью 100 Вт имеет световой поток 1300 Лм, а металлогалогенная лампа мощностью 70 Вт – 6000 Лм.
Освещённость
Это поверхностная плотность светового потока, падающего на площадку заданной величины. Единица освещённости – люкс [Лк]. Одна из самых главных величин в нормах освещения. Чаще всего нормируется горизонтальная освещённость (в горизонтальной плоскости). Диапазон уровней освещённости составляет при искусственном освещении от 1 до 20 Лк на улице и от 20 до 5000 Лк в помещении. В природных условиях освещённость E=0,2 Лк в полнолуние, 5000 – 10000 Лк днём при сплошной облачности и до 100000 Лк в ясный солнечный день.
Сила света
Это пространственная плотность светового потока, ограниченная телесным углом. Единица измерения силы света – кандела [кд] – воспроизводится эталоном и входит в Международную систему основных единиц (СИ).
Распределение силы света в пространстве ( кривая силы света, КСС) – одна из важнейших характеристик осветительных приборов, необходимых для расчёта освещения. КСС светильников обычно приводится в полярных координатах для условной лампы со световым потоком 1000 лм, т.е. в кд/кЛм.
Яркость
Для матовых (диффузных или равноярких) поверхностей эта величина пропорциональна поверхностной плотности отраженного или излучаемого этой поверхностью светового потока. В более общем виде она равна отношению силы света в направлении точки наблюдения к видимой из этой точки площади светящей поверхности (проекции). Единица яркости – кд/м2. Яркость непосредственно связана с уровнем зрительного ощущения, а распределение яркости в поле зрения (например, в интерьере) характеризует качество освещения. В полной темноте человек реагирует на яркость в одну миллионную долю кд/м2. Сплошной светящий потолок при яркости более 500 кд/м2 оказывает дискомфортное влияние. Яркость солнца – около 1 000 000 000 кд/м2, а люминесцентной лампы – 5-11 тысяч кд/м2.
Коэффициенты отражения [ρ] и пропускания [τ]
Определяются как отношение отраженного [ρ] или пропущенного [τ] материалом светового потока к упавшему световому потоку.
Коэффициенты отражения некоторых отделочных материалов:
- белая краска (0,7 – 0,8)
- светлые обои ( 0,5 – 0,7)
- белый мрамор – 0,45
- красный кирпич – 0,3
- темное дерево (0,1 – 0,25)
- асфальт – 0,07
При светлой отделке помещений (особенно при малых по отношению к высоте размерах) очень заметно возрастают уровни освещенности. Коэффициент отражения фона, на котором рассматривается объект, входит в число показателей, характеризующих условия зрительной работы на рабочем месте. По нормам России фон считается светлым при коэффициенте отражения более 0,4, средним – от 0,2 до 0,4 и тёмным – менее 0,2. При увеличении коэффициента отражения фона – видимость объекта улучшается.
Световая отдача
Это главная характеристика энергоэкономичности ламп и она равна отношению светового потока лампы к её мощности. Применение ламп с высокой световой отдачей – основной путь экономии электроэнергии в осветительных установках. Например, путём замены ламп накаливания, световая отдача которых 7-22 лм/Вт, компактными люминесцентными лампами (50-90 лм/Вт) можно снизить расход электроэнергии в среднем в 5-6 раз, не уменьшая уровня освещённости.
Показатели ослеплённости и дискомфорта
Эти показатели характеризуют прямое слепящее действие источников света или светильников. По показателю ослеплённости можно судить о степени ухудшения видимости при действии блёских источников света. Например, при значении этого показателя, равном 100, видимость снижается на 10%. По российским нормам для точных производственных работ значение показателя ослеплённости должно быть не выше 20. Показатель дискомфорта (М) характеризует степень неудобства или напряженности при наличии в поле зрения источников повышенной яркости.
Цилиндрическая освещенность [Ец]
Характеризует насыщенность помещения светом и определяется (в люксах) как средняя вертикальная освещенность, создаваемая в заданной точке наблюдения. В России эта величина нормируется в таких помещениях как холлы, парадные вестибюли, зрительные, выставочные, читальные и торговые залы, залы заседания и приёмов и т.п. Повышенная насыщенность светом создаётся при уровнях Ец не менее 100 лк.
Цвет и цветность
Понятие цвета определяется, как свойство видимого излучения вызывать зрительное ощущение цветности (цветовой тон + насыщенность) и яркости предметов. Цветовой тон (красный, оранжевый и т.д.) характеризуется длиной волны видимого излучения, а насыщенность – чистотой цвета, связанной со степенью приближения к спектрально чистому цвету от точки белого. Например, малонасыщенные цветовые тона получают путём большого разбавления красителя белой краской. Цвет одного и того же предмета может сильно изменяться в зависимости от спектрального состава освещения.
Цветовая температура [Тц]
Очень важная характеристика источников света, определяющая цветность ламп и цветовую тональность (тёплую, нейтральную или холодную) освещаемого этими лампами пространства. Она примерно равна температуре нагретого тела одинакового по цвету с заданным источником света. Выражается в температурной шкале Кельвина: Т = (градусы Цельсия +273) К.
Значения Тц некоторых источников:
- пламя свечи – 1900 К;
- лампы накаливания – 2500-3000 К;
- люминесцентные лампы – 2700-6500 К;
- Солнце – 5000-6000 К;
- облачное небо – 6000-7000 К;
- ясное небо – 10000-20000 К;
Индекс цветопередачи [Ra]
Одна из основных цветовых характеристик качества разрядных ламп. Характеризует степень воспроизведения цветов различных материалов при их освещении лампой при сравнении с эталонным источником света. Наивысшее значение Ra=100. Наихудшие по цветопередаче натриевые лампы высокого давления имеют Ra=25. Согласно нормам Германии очень хорошая цветопередача (степень 1) соответствует значениям Ra=80 и более, хорошая (степень 2) – от 60 до 79, удовлетворительная (степень 3) – от 40 до 59 и недостаточная (степень 4) – от 20 до 39.
Коэффициент пульсации освещенности [Кп]
Характеризует относительную глубину пульсации освещенности (в %) в заданной точке помещения при питании ламп от сети переменного тока. Неконтролируемая пульсация освещенности приводит к повышенной опасности травматизма при работе с движущимися и, в особенности, с вращающимися объектами, а также к зрительному утомлению. В нормах России для большинства зрительных работ установлено значение Кп не более 20.
Прежде чем вы купите светодиодную лампу
Прежде чем вы купите свою первую светодиодную лампу, мы хотели бы познакомить вас с этими новыми энергосберегающими источниками света. Светодиоды отличаются от традиционных источников света. В лампе накаливания вольфрамовая спираль нагревается электрическим током и испускает свет. В люминесцентных лампах электрическая дуга в парах ртути вызывает ультрафиолетовое излучение, которое воздействуя на люминофор, покрывающий внутренние стенки лампы, порождает видимый свет.
Лампа накаливания, светодиодная лампа и компактная люминесцентная лампа
Светодиод или светоизлучающий диод это полупроводниковый прибор, излучающий свет при прохождении через него электрического тока. Свет, излучаемый светодиодом, лежит в узком спектральном диапазоне, а цвет излучения зависит от материала полупроводника светодиода.
Если с лампой накаливания все было предельно просто – стекло колбы было либо прозрачным, либо матовым и покупая их мы никогда не задумывались о такой характеристике, как цветовая температура и индекс цветопередачи, то уже с люминесцентными лампами все было не так просто. У люминесцентных ламп была своя маркировка: ЛБ (белый свет), ЛД (дневной свет), ЛЕ (естественный свет), ЛХБ (холодный свет), ЛТБ (тёплый свет). А добавление буквы Ц в конце значило, что в лампе применен люминофор с улучшенной цветопередачей, а две буквы ЦЦ — люминофора с высококачественной цветопередачей.
Еще больше все усложнилось с появлением на рынке компактных люминесцентных ламп (КЛЛ), где маркировка из трех цифр содержит информацию об индексе цветопередачи и цветовой температуре. Здесь мы не приводим таблицу международной маркировки по цветопередаче и цветовой температуре, но отметим, что наиболее близки по излучаемому свету к лампам накаливания люминесцентные лампы с цифровым кодом 827, где цифра 8 указывает на индекс (коэффициент) цветопередачи в 80 Ra, а 27 – на цветовую температуру в 2700К (что близко к цветовой температуре лампы накаливания).
На сегодняшний день пока не существует полупроводниковых материалов, применение которых в светодиодах позволило бы получить белый цвет, поэтому белый цвет получается двумя методами:
- Комбинацией светодиодов разного цвета (RGB-LEDs) для получения белого. Метод позволяет получить высокое качество цвета и возможность подстройки цвета, но стоимость светодиодных ламп – весьма высока.
- По аналогии с люминесцентными лампами, покрытием люминофором светодиода синего цвета. Достоинство этого метода – дешевизна и высокий индекс (коэффициент) цветопередачи (CRI). Но из-за покрытия фосфором снижается световая эффективность.
Светодиодная лампа состоит из нескольких светодиодов (светодиодных чипов) и так называемого драйвера – устройства, которое преобразует переменный ток напряжением 220 Вольт в постоянный ток для питания светодиодов. Обычные светодиодные лампы (кроме ламп специальной конструкции) являются направленными источниками света и характеризуются углом направленности светового потока.
Световая эффективность светодиодных ламп
Световая эффективность источника света измеряется в люменах на Ватт (лм/Вт). Какова же на сегодня световая эффективность светодиодных ламп по сравнению с традиционными источниками света? В апреле 2010 года американская компания Cree заявила, что эффективность её светодиодного чипа XLamp XM достигла 160 лм/Вт. Но пока световая эффективность лучших светодиодных ламп сравнима с эффективностью люминесцентных.
Эффективность светодиодных ламп в применении
Если же говорить об эффективности в применении, то светодиодные лампы, в отличие от ламп накаливания и люминесцентных ламп, являются направленными источниками света и соответственно их эффективность в применении выше, чем у традиционных источников света, у которых 40-50% общего светового выхода теряется.
Качество цвета
Большинство эффективных светодиодов (светодиодных чипов) имеют высокую цветовую температуру, часто выше 5000К и испускают “холодный белый” свет. Однако в последнее время значительно выросла эффективность светодиодов “теплого белого” (2600-3500К) света и кроме того вырос их индекс цветопередачи (CRI). В лучших образцах светодиодных ламп он достигает 80, что эквивалентно хорошим люминесцентным лампам.
И так, на что вы должны обратить внимание при покупке светодиодных ламп:
- Мощность лампы и эквивалентная мощность по отношению к лампам накаливания
- Цветовую температуру: “холодный белый” (CW) 5500-6500K или “теплый белый” (WW) 2600-3500К
- Индекс цветопередачи (CRI) – лучше не менее 80
- Угол направленности светового потока: обычно 150-160 градусов
- Срок службы: обычно все производители указывают 50 000 часов
- Имеет ли светодиодная лампа управление яркостью (такие лампы стоят дороже), если конечно это вам нужно
- Ну и конечно не забудьте о производителе светодиодных ламп – ведь только те, кому можно доверять, гарантируют все заявленные характеристики.
Как правильно выбрать светодиодную лампу
Во времена ламп накаливания , вы можете определить яркость лампы по количеству ватт, указанному на упаковке. В современных светодиодных лампах яркость измеряется в люменах.
Но что за люмен? Чем он отличается от ватта? Как узнать, какая светодиодная лампа нужна для ваших ламп и осветительных приборов?
К счастью, это достаточно просто, чтобы устранить любую путаницу.
Какой ватт?
При покупке лампы накаливания мощность в ваттах дает потребителю хорошее представление о яркости лампы. Чем больше ватт, тем ярче лампочка.
Однако это правило не распространяется на светодиодные лампы. Светодиод, который потребляет 60 Вт, никоим образом не сравним с лампой накаливания, потребляющей 60 Вт.На самом деле, 60-ваттный светодиод может вас ослепить. Светодиоды спроектированы так, чтобы потреблять меньше энергии и, естественно, имеют более низкую мощность. Это означает, что использовать ватты для определения яркости бесполезно.
Чтобы решить эту проблему, производители ламп начали использовать люмены для оценки ламп. Это дает вам более точное представление о том, сколько света ожидать от светодиода.
Почему люмен?
Измерение в люменах — не новая концепция, разработанная только для светодиодов. Это рейтинг, который десятилетиями использовался для измерения количества света, излучаемого лампочкой (или чем-либо еще).Просто до недавнего времени его преимущественно не отображали на упаковке. В 2011 году Федеральная торговая комиссия США начала требовать от производителей компактных люминесцентных ламп, ламп накаливания и светодиодных ламп использовать люмен как показатель яркости лампы.
«Хотя измерения ватт знакомы потребителям и на протяжении десятилетий указываются на передней части упаковки лампочек, ватты являются мерой использования энергии, а не яркости», — говорится в пресс-релизе FTC. «В результате, полагаясь только на измерения ватт, потребителям сложно сравнивать традиционные лампы накаливания с более эффективными лампами, такими как компактные люминесцентные лампы.»
На упаковке рейтинг светового потока обозначен числом, за которым следует» лм «, сокращение для люменов. Чем выше рейтинг люмена, тем ярче будет лампа.
Выбор правильной лампы
Самый простой способ Определите, какая лампа вам нужна, используя тележку для преобразования лампы накаливания / светодиода.
Допустим, вы обычно используете лампу накаливания на 60 Вт. Вероятно, вы захотите выбрать светодиодную лампу, которая потребляет от 8 до 12 Вт и имеет люмен 800, чтобы получить такое же освещение.Эта таблица преобразования поможет вам найти светодиодную лампу, аналогичную лампе накаливания, которую вы использовали:
Шэрон Вакнин / CNET
Как видите, потребляемая мощность светодиодов зависит от светового потока. Это связано с тем, что некоторые бренды светодиодов создали лампы, которые обеспечивают больше люмен при меньшей мощности. Для максимальной экономии энергии Energy Star рекомендует выбрать лампу с наибольшим количеством люменов, а затем выбрать лампу с наименьшей мощностью.
Примечание редактора: Эта статья была первоначально опубликована 2 декабря 2015 г. и была обновлена.
Нужна дополнительная помощь в выборе идеального освещения для вашего дома? Ознакомьтесь с нашим списком лучших светодиодных ламп в 2017 году.
Вот 5 причин, по которым ваша следующая лампочка должна быть умной.
Как измерить яркость современных светодиодных ламп
Изучая освещение или покупая лампочки, потребители часто видят три обозначения для описания освещения: люмен, ватт и кельвин.Довольно часто возникают путаницы в этих различиях и из-за них возможно принятие необразованного решения. Мы уже обсуждали цветовую шкалу Кельвина и ее отношение к наружному освещению, но здесь мы демистифицируем термины ватт и люмен, чтобы потребители могли найти именно то, что им нужно.
Люмены являются мерой общего количества видимого света от лампы или источника света. Чем выше показатель люмена, тем ярче будет лампа; и чем ниже показатель светового потока, тем ярче он будет.По сути, глядя на люмены, вы можете купить желаемое количество света.
Яркость или уровень светового потока источников света на вашем участке может сильно различаться, поэтому вот хорошее практическое правило :
- Чтобы заменить 100-ваттную лампу накаливания, поищите лампу, которая дает около 1600 люмен. Если вы хотите что-то более тусклое, выбирайте меньше люмен; Если вы предпочитаете более яркий свет, ищите больше.
- Замените лампу мощностью 75 Вт на светодиодную лампу, которая дает около 1100 люменов
- Замените лампу мощностью 60 Вт на светодиодную лампу, которая дает около 800 люменов
- Замените лампу 40 Вт на светодиодную лампу, которая дает около 450 люменов
Ватты, , с другой стороны, представляют собой измерение потребляемой мощности, и используемой энергии.У традиционных ламп накаливания чем выше мощность, тем ярче свет. С энергосберегающими лампами, такими как светодиодные, это несколько отличается, потому что нет жесткого правила, позволяющего соотносить мощность с выходной мощностью, а светодиоды потребляют гораздо меньше энергии. Светодиодная лампа одного бренда мощностью 9 Вт может излучать достаточно люменов, чтобы заменить лампу накаливания мощностью 60 Вт, но другому бренду может потребоваться использовать менее эффективный светодиод, такой как 12 Вт, чтобы создать достаточно люмен для замены той же лампы на 60 Вт. Из-за этого намного важнее смотреть на люмен, чем на ватт при рассмотрении светоотдачи.
Если у вас есть какие-либо вопросы или вы хотите обсудить свои потребности в освещении, пожалуйста, запросите бесплатную онлайн-консультацию .
Мы являемся местной компанией и освещаем Нэшвилл с 2012 года. Наша команда имеет многолетний опыт создания и установки уникальных и элегантных конструкций наружного освещения, а также оказания услуг по техническому обслуживанию и ремонту домов и предприятий по всему Среднему Теннесси. Наша отмеченная наградами компания была признана 1-й в рейтинге Nashville House & Home за ландшафтное освещение четыре года подряд и была признана лучшей среди Houzz за последние три года.
Расположенный в Гудлетсвилле, компания Light Up Nashville обслуживает Нэшвилл, Брентвуд, Франклин, Хендерсонвилл, Галлатин, прилегающие районы и за их пределами.
Насколько яркие светодиодные лампы?
В течение долгого времени многие люди определяли яркость лампочки по ее мощности. Предполагается, что, например, 100-ваттная лампочка, естественно, будет ярче, чем 40-ваттная.
Хотя это работает для ламп накаливания (хотя даже в этом случае это неточный способ измерения яркости), с развитием светодиодных ламп с низким энергопотреблением сама по себе мощность не обязательно будет указывать на яркость лампы.Однако есть несколько способов лучше сказать …
Эквивалентная мощность
Причина, по которой вы больше не можете использовать ватты для определения яркости лампочки, заключается в том, что светодиодные лампы дают такой же свет, как и лампы накаливания, но имеют гораздо меньшую мощность. Ниже приведено приблизительное руководство по эквивалентной мощности светодиодных и других ламп.
Что такое люмен?
Люмен (лм) — это количество видимого света, излучаемого лампой или другим источником света.Это гораздо более точный способ определения яркости лампы, поскольку это мера ее выходной мощности, в отличие от мощности, которая просто обозначает потребляемую мощность.
Светодиодные лампыдля общего использования в доме обычно имеют мощность от 5 до 15 Вт и излучают от 300 до 500 люмен. Некоторые наружные прожекторы излучают более 20 000 лм.
Отношение люмен к ватту
Светодиодные лампыс одинаковой мощностью могут не иметь одинаковых люменов.Например, один GLS мощностью 5 Вт может излучать 400 люмен, а другой — 470 люмен.
Самый простой способ измерить эффективность светодиодной лампы — это вычислить ее отношение люменов к ваттам. Для этого просто разделите количество люменов, которые она излучает, на ее мощность: например, лампа мощностью 5 Вт, которая излучает 400 люмен, имеет соотношение 80 люмен на ватт (сокращенно лм / Вт).
Практическое руководство по светодиодному освещению в жилых помещениях
Up Top: Краткое руководство по покупке линейного освещения
ВВЕДЕНИЕ
Светодиодные осветительные решения находятся на подъеме.На рынке уже доступно больше светодиодных продуктов и альтернатив, чем когда-либо было для традиционных ламп накаливания и компактных люминесцентных (CFL), энергоэффективных ламп.
Хотя некоторые светодиодные продукты могут выглядеть как любая другая лампочка или люминесцентная лампа, разнообразие продуктов, новая терминология, введенная светотехнической промышленностью, и тот факт, что светодиоды представляют собой технологию, отличную от того, к чему мы привыкли десятилетиями, могут сделать перейти на светодиодное освещение довольно сложно.
В этой статье объясняются «обязательные» термины, которые домовладельцы или подрядчики должны знать при покупке светодиодной продукции, даются рекомендации по выбору продукции для различных областей жилой среды и указываются некоторые подводные камни, которых следует избегать и о которых следует знать. из, чтобы переключиться на светодиодное освещение успешно.
Зачем нужно переходить на светодиоды?
Помимо того, что они гораздо более энергоэффективны, чем лампы накаливания и лампы накаливания и лампы накаливания, они могут обеспечить значительную экономию энергии, они служат намного дольше, не содержат ртути, как лампы накаливания, и предоставляют гораздо больше возможностей для яркости и светлого внешнего вида (теплые по сравнению сздорово).
Когда вы живете в Калифорнии, каждое новое строительство или проект реконструкции подчиняется Калифорнийскому стандарту энергоэффективности 2013 года, также известному как Раздел 24. Светодиодные продукты — очень хорошее решение для соответствия или превышения строгих требований к энергопотреблению, изложенных в этом стандарте.
Кроме того, светодиоды имеют не только традиционную форму лампочки. Благодаря своей компактной форме решения светодиодного освещения бывают всех форм, форм и размеров, обеспечивая практически неограниченное количество способов использования света и добавления света в домашнюю среду.
Терминология
При покупке традиционных ламп накаливания все, на что нам нужно было обратить внимание, — это форма лампы, мощность, которая указывала на яркость лампы, и размер винтового основания, чтобы убедиться, что она подходит к лампе.
С КЛЛ появилась возможность выбирать внешний вид света, описываемый в основном как мягкий белый, ярко-белый и дневной свет. Мягкий белый цвет напоминает теплый тон лампы накаливания, тогда как яркий и дневной свет более четкий и прохладный с голубоватым оттенком.
При использовании светодиодов важно понимать три концепции.
- Яркость
- Светлый вид
- Цветопередача
В конце концов, светодиодные продукты по-прежнему дороже, чем сопоставимые продукты накаливания, и они будут служить гораздо дольше, поэтому мы хотим быть уверены, что покупаем продукт, подходящий для работы.
Яркость:
Прежде всего, мы должны избавиться от заблуждения о том, что мощность равна яркости.В то время как для ламп накаливания мощность и яркость имеют прямую корреляцию, это неверно для светодиодных продуктов, и поскольку светодиоды потребляют гораздо меньше энергии (ватт), невозможно сравнить яркость лампы накаливания и светодиодной лампы на основе мощности.
Таким образом, единственный фактор, на который следует обращать внимание при поиске яркости светодиодной лампы, — это люмен и . Люмен — это единица измерения яркости, которая сообщает нам, сколько света излучает конкретный осветительный прибор.
Для справки: типичная лампа накаливания мощностью 60 Вт излучает около 800 люмен.
Внешний вид света:
Цветовой внешний вид или коррелированная цветовая температура (CCT) света измеряется в кельвинах (K). Когда мы хотим узнать, создает ли осветительный прибор или лампочка более теплый или более четкий, холодный свет, нам нужно искать число в Кельвинах. Чем меньше число, тем теплее будет свет, а чем выше число, тем холоднее и голубее будет свет. Типичная лампа накаливания имеет цветовую температуру от 2700K до 3000K. Солнце в полдень в ясный день излучает свет примерно 5500K.
Люди часто жалуются на то, что лампы КЛЛ кажутся холодными и стерильными, по сравнению с лампами накаливания. Проблема здесь в том, что они выбрали высокую температуру кельвина, холодную цветовую температуру вместо более теплой цветовой температуры.
Точность цвета
Вы когда-нибудь были в магазине и думали, что вы дальтоник, потому что не могли понять, темно-зеленый или синий предмет одежды, на который вы смотрите? Если да, то вы испытали плохую цветопередачу светильника внутри этого магазина.
Источники света отличаются своей способностью «правильно» отображать цвета объектов. И под «правильным» мы подразумеваем сравнение с естественным источником света, таким как солнце или лампа накаливания.
Цветопередача выражается как индекс цветопередачи или сокращенный CRI. Шкала идет от 0 до 100. Лампа накаливания 2700K имеет индекс цветопередачи 100.
Значение выше 80 при текущей светодиодной технологии считается хорошим индексом цветопередачи и будет достаточным для большинства приложений.Однако для некоторых областей может быть желательна лучшая цветопередача до 90 или выше, мы объясним это в следующем разделе.
Выбор подходящего светильника для различных функций освещения в вашем доме
Функции света
Освещение обычно подразделяется на окружающее, рабочее, акцентное и декоративное. У каждой категории своя цель. При планировании освещения для дома полезно понять, как эти разные уровни освещения могут дополнять друг друга.
Окружающее освещение:
Окружающее (или общее) освещение обеспечивает равномерное освещение по всей площади или комнате для общего обзора и ориентации.
Встраиваемые светильники, светильники для бухт или подвесные светильники являются типичными примерами окружающего освещения.
Рабочее освещение:
Для обеспечения освещения в зоне, где происходит деятельность, например кухонная столешница, где готовятся блюда, лампа для чтения или зеркало для макияжа.Он предназначен для выделения определенной области в дополнение к окружающему освещению в этой комнате.
Акцентное освещение:
Используется для выделения таких объектов, как произведения искусства, архитектурные элементы или растения, путем создания контраста яркости. Это часто достигается с помощью встраиваемых или устанавливаемых на поверхность регулируемых светильников или освещения дорожек, настила и мойки стен.
Декоративное освещение
Это украшение для дома; Основная функция декоративных осветительных приборов — красиво выглядеть.Люстры и настенные бра — типичные примеры.
Такой многоуровневый подход к освещению полезен для создания комфортной, визуально сбалансированной атмосферы.
После того, как будет принято решение, какой тип светильника и где будет размещаться для различных функций, пора подумать о цветовой температуре.
Свет должен дополнять дизайн интерьера, мебель, цвета и другие украшения в вашем доме.
В целом, цветовая температура — это во многом личный выбор и предпочтение, однако есть несколько правил, которые можно применить, чтобы выбрать свет, который дополняет дизайн интерьера.
Цветовые температуры для окружающего света
Окружающее освещение в комнате обычно является основным источником света и, следовательно, ключевым элементом в создании общего настроения и атмосферы в комнате.
Светильники теплого белого цвета часто предпочитают в гостиных и спальнях для создания уютной атмосферы.
Число Кельвина, предлагаемое для светодиодных фонарей, обычно составляет 2700K и 3000K. Эти теплые белые светильники — хороший выбор, чтобы дополнить естественные тона и деревянную мебель.
Если установлено более одного типа внешнего освещения, например Для освещения вниз и бухты выберите одинаковую цветовую температуру для обоих, чтобы обеспечить равномерный, гармоничный эффект.
Хотя многие люди, кажется, предпочитают теплый белый цвет, комнаты, обставленные мебелью светлых тонов, используют более яркие цвета, например белый, синий и светло-серый. на современной кухне можно получить более нейтральный и прохладный свет.
Освещение с числом Кельвина в диапазоне от 3500K до 4000K считается нейтральным белым и лучше подчеркивает более светлые цвета, чем теплый белый свет.
Кроме того, исследования показывают, что нейтральный и холодный белый свет бодрит людей и поэтому является хорошим выбором для домашнего офиса и учебы.
Поскольку нейтральный и холодный белый свет создают лучший контраст, чем теплый белый, они также являются хорошим выбором в качестве основного рассеянного света в ванных комнатах. Более прохладный свет даст более реалистичное представление о том, как мы выглядим в реальном мире. Ищите значения Кельвина в диапазоне от 4000K до 5000K для вашей основной арматуры для ванной комнаты.
Если в ванной комнате установлена ванна, и вы также хотите создать теплую атмосферу, подумайте об использовании дополнительного слоя света, например бра с теплым белым светом в диапазоне 2700К, который можно переключать отдельно от основного света.
Цветовые температуры для рабочего освещения
Рабочее освещение используется для обеспечения дополнительного, более высокого уровня света, чем окружающая область, где выполняется визуальная задача.
Поэтому важно, чтобы свет создавал хороший контраст, который лучше всего достигается с помощью нейтрального или холодного белого цвета в диапазоне от 3500K до 5000K.
Помимо цветовой температуры, для рабочего освещения особенно важны индекс цветопередачи (CRI) и яркость.
В то время как для окружающего освещения часто бывает достаточно CRI 80+, для рабочего освещения следует учитывать CRI 90 и выше.
Еда, которую готовят на кухонном столе, будет выглядеть намного привлекательнее, если ее хорошо обработать в свете под шкафом.
Макияж с хорошей цветопередачей также создаст более реалистичное изображение.
Затемнение
Затемнение — важная особенность окружающего и рабочего освещения. Он позволяет нам установить уровень освещенности, чтобы создать желаемую атмосферу в помещении или создать идеальную яркость для конкретной задачи. Кроме того, диммирование обеспечивает экономию энергии за счет снижения электрической нагрузки светильника.
В отличие от стандартной лампы накаливания, не все светодиодные светильники рассчитаны на регулировку яркости, поэтому важно смотреть на этикетку продукта и убедиться, что светильник имеет маркировку с регулируемой яркостью.
При переключении на светодиоды будьте готовы также заменить переключатели диммера. Большинство диммеров были созданы для ламп накаливания, однако светодиоды основаны на совершенно другой технологии, и поэтому эти два не обязательно хорошо работают вместе. Это похоже на попытку подключить старый дисковый телефон к цифровой розетке.
Большинство производителей предоставляют список совместимости, в котором указаны производители и модели диммеров, которые были протестированы и совместимы со светодиодным осветительным прибором.
Для обеспечения оптимального освещения настоятельно рекомендуется придерживаться рекомендаций производителя. Использование несовместимых диммеров может привести к мерцанию света или недостаточному уровню затемнения.
Установка
Хотя большинство светодиодных осветительных приборов считаются низковольтными, это означает, что они либо имеют встроенный трансформатор, либо требуют внешнего трансформатора, хорошая новость заключается в том, что нет необходимости переделывать дом для использования светодиодов. Вся проводка, которая обычно используется в домах, идеально подходит для использования со светодиодами.
Многие светодиодные светильники имеют уже встроенный трансформатор и могут быть подключены к стандартной электрической розетке. Некоторые светодиодные продукты, например, светодиодные ленты, требуют внешнего источника питания. Они бывают двух форматов: либо с подключенным шнуром переменного тока, как у источника питания ноутбука, либо их нужно подключать к розетке.
Рекомендуется привлечь квалифицированного электрика для выполнения любых работ по подключению к сети.
Обращайте внимание на этикетку продукта, она укажет, требуется ли блок питания.
Как выбрать качественный товар
На рынке представлено множество светодиодных продуктов, но не все они одинаковы. Чтобы убедиться, что продукт безопасен в использовании и был протестирован независимой лабораторией, обратите внимание на маркировку UL или ETL на продукте или упаковке. Хотя так называемый список UL или ETL не является требованием для продажи продуктов в США, если установка подлежит электрическому осмотру в рамках проекта ремонта или нового строительства, продукт может быть отклонен инспектором, если он не проверялся на безопасность.
В связи с длительным сроком службы светодиодной продукции гарантия должна составлять не менее 3-5 лет. Хотя это долгий срок, сохраняйте квитанции для подтверждения покупки на случай, если продукт выйдет из строя преждевременно.
Взгляните на этикетку продукта. Эти характеристики должны быть четко обозначены:
- Световой поток (люмен)
- Потребляемая мощность (Вт)
- люмен на ватт (эффективность)
- Точность цвета (CRI> 80)
- Цветовая температура (в градусах Кельвина следует указывать число, т.е.е. 2700K не просто теплый белый или холодный белый)
Lighting Inc | Что лучше сделать с люменами? Оценка яркости светодиодов
В прошлом покупка лампочек означала определение того, какую мощность лампы искать. Для разных мест и приложений требовалась разная мощность. В случае светодиодных ламп дело обстоит иначе, хотя эта информация все еще доступна. В этой статье мы быстро рассмотрим, что общего у люменов с ваттами … и чего нет.
Вт ≠ Яркость
Вы, наверное, привыкли покупать лампочки в зависимости от их мощности. Это тот случай, когда вы ищете лампы накаливания. Эти лампы очень недорогие, но они потребляют огромное количество энергии по сравнению с компактной люминесцентной лампой, которая может потреблять четверть электричества, или светодиодной лампой, которая может потреблять всего лишь десятую часть энергии. Покупка сопоставимых светодиодов для замены лампы накаливания может сбивать с толку, потому что мы часто используем мощность в ваттах для определения яркости лампочки.По правде говоря, мощность — это не мера яркости, а скорее всего лишь показатель того, сколько электроэнергии требуется лампе накаливания для достижения оптимальной яркости. Истинная яркость лампочки измеряется в люменах.
Ищите люмены
Яркость света, излучаемого определенным источником, называется люменом. Эта единица измерения была установлена Международной системой единиц (СИ) как средство измерения света от различных источников. Это измерение количества видимого света, создаваемого источником.Формы невидимого света, такие как радио, гамма-луч, ультрафиолет и инфракрасный свет, не принимаются во внимание при определении светового потока источника света.
Как определить, что вам нужно
После десятилетий простой замены ламп в зависимости от мощности предыдущей лампы, вы можете по понятным причинам сбиться с толку. Может быть трудно понять, сколько люмен у ваших светодиодных ламп. Стоит узнать разницу, потому что единица измерения люмена не изолирована для светодиодных ламп, но также используется для определения яркости всех других типов ламп.Если вы все еще не совсем понимаете понятие люмен, мы, к счастью, составили руководство для определения того, какой световой поток и уровень Кельвина подходят для вашего дома.
Все еще чешете затылок? Позвольте нам помочь!
Если мир светодиодных ламп все еще сбивает вас с толку, позвольте нам помочь вам. Наша команда светодиодных экспертов может помочь вам с модернизацией светодиодных фонарей для вашего дома или бизнеса, а также с установкой новых светильников для нового строительства. Вы можете доверять светодиодным профессионалам в Lighting Inc.
Протестировано: сравнение яркости светодиодов с другими лампами
Я не был уверен, что цена была правильной. Обычно, когда я прохожу через Lowes, я проверяю цену на светодиодные лампы. Кажется, они всегда стоили от 11 до 15 долларов за штуку, которая ввинчивается в стандартный светильник. Этот сказал «2,48 доллара». Это не может быть правильным, но это было так. Эту лампочку нельзя было купить по цене менее 3 долларов. Я купил это. Теперь о тестировании.
Мощность
На коробке написано, что она похожа на лампу накаливания на 60 Вт, но использует только 9.5 Вт. Проверим, правда ли это. Да, и ради интереса посмотрю на другие лампочки: компактную люминесцентную и три лампы накаливания (60 Вт, 100 Вт, 200 Вт). Да, я нашел лампочку на 200 Вт — я почти уверен, что вы больше не сможете их купить.
Мне просто нужно подключить каждую лампочку к Watts Up Pro, а затем включить ее. На самом деле, я также использовал Logger Pro (от Vernier), чтобы посмотреть на мощность как функцию времени. Я хотел посмотреть, произошло ли значительное изменение мощности при нагревании лампы — не было.Вот мощность для каждой лампочки.
На самом деле там еще две лампочки. У меня была лампа накаливания на 100 Вт с прозрачным стеклом (вместо матового стекла), а затем были две компактные люминесцентные лампы с разной мощностью (13 и 15 Вт). Возможно, эти данные не так уж удивительны. Я обнаружил, что светодиодная лампа была указана на 9,5 Вт, но измерялась на 10,43 Вт. Действительно, все лампочки были не в номинальном состоянии. Лампа мощностью 200 Вт потребляла всего 191,6 Вт, но обе лампы мощностью 100 Вт работали при мощности 110 Вт.Ну что ж, это не имеет большого значения.
Яркость
Я знаю, о чем вы думаете — конечно, светодиоды потребляют меньше энергии, но они недостаточно яркие. Для меня нет ничего достаточно яркого, кроме лампы накаливания на 200 Вт или, может быть, Солнца. Итак, насколько яркий светодиод. Сначала скажу, что выглядит прекрасно (просто невооруженным глазом). Но как насчет некоторых измерений? Для этого теста я собираюсь использовать датчик освещенности Vernier. Теперь возможно (и вполне вероятно), что интенсивность света отличается под разными углами от лампы.Чтобы убедиться, что лампочка распределяет свет равномерно, я надену лампу на датчик вращения и поверну лампочку, собирая данные об интенсивности с помощью датчика, который находится на расстоянии 69 см. Вот данные для светодиодных ламп, ламп накаливания мощностью 60 и 200 Вт и компактной люминесцентной лампы мощностью 13 Вт.
Вы должны заметить две вещи. Во-первых, при вращении лампы свет получается довольно равномерным. Я не уверен, почему это провал в 200-ваттной лампочке, но я собираюсь предположить, что, возможно, моя рука мешала или что-то в этом роде.Во-вторых, у всех остальных ламп примерно такая же яркость.
Что, если я установлю лампу горизонтально и поверну ее? Вот так (за исключением того, что данные были собраны в темной комнате, за исключением лампочки):
Вот данные, показывающие, что эти же 4 лампы повернуты по горизонтали с одинакового расстояния (69 см).
Есть одно различие между светодиодом и другими лампочками. Все остальные лампочки увеличиваются (по крайней мере, немного) по мере того, как лампочка поворачивается на бок.Почему? Когда вы смотрите на лампочку сверху (нулевые радианы на графике), все лампочки выглядят почти круглыми. Однако обратите внимание на светодиод и лампу мощностью 200 Вт, если смотреть сбоку. Что касается светодиода, большая часть бокового профиля вообще не светится. На самом деле, это похоже на часть круга, если смотреть со стороны, так что интенсивность на некотором расстоянии будет меньше, чем при взгляде прямо. Теперь возьмем лампочку на 200 Вт. Обратите внимание, как долго это длится? Все, что находится сбоку, будет светиться, что увеличивает интенсивность света, если смотреть с этой точки зрения.Конечно, как только вы начинаете получать углы обзора от нижней части лампы, интенсивность уменьшается, потому что патрон лампы начинает блокировать часть света. Но разве светодиод такой же яркий, как другие лампочки? Что ж, нет ничего более яркого, чем нелепая лампочка на 200 Вт. Но светодиод кажется очень похожим на другие фонари. При взгляде сбоку интенсивность света уменьшается, но все равно кажется ярким. Но как насчет общего количества света, производимого каждой лампочкой? Я посмотрю на это в следующем сообщении в блоге.
Температура
Вы можете думать о лампочке с точки зрения энергии. Вы вкладываете в него немного электроэнергии и получаете световую энергию (неправильные технические термины). Однако есть проблема — вы также получаете тепловую энергию из лампочки. Чем больше тепла вы получите, тем меньше света вы получите. Самые эффективные лампы будут иметь меньшую теплоотдачу и не будут такими горячими. Давайте посмотрим на температуру этих лампочек, построив график температуры (в самой горячей точке) в зависимости от мощности.
LED люменов в ватт Таблица преобразования
Люмен — новая единица измерения для лампочек
На протяжении десятилетий мы покупаем лампочки в зависимости от мощности.Но по мере того, как стали доступны энергоэффективные маловаттные лампочки, такие как КЛЛ и светодиоды, ватты стали ненадежным показателем для выбора ламп. Вместо того, чтобы сосредотачиваться на мощности, которая измеряет мощность или потребление энергии, производители указывают яркость своих энергоэффективных ламп в люменах, которые измеряют световой поток. Поэтому, хотя мы, возможно, привыкли покупать лампочки в зависимости от мощности, люмены на самом деле являются более точным показателем яркости вашего света.
Преобразование люмен в ватт
Сколько люмен в ватте? Поскольку люмены измеряют яркость, а ватты измеряют выходную энергию, не существует простого метода преобразования мощности в люмены. При энергосберегающем освещении, таком как светодиоды и КЛЛ, количество люменов в лампе мощностью 60 Вт или 100 Вт зависит от светового потока лампы, а не от ее использования энергии.
Не отчаивайтесь! Измерение и маркировка светоотдачи вместо использования энергии на самом деле упрощает вам поиск подходящей энергоэффективной лампы для вашего помещения.Используйте эту таблицу, чтобы определить, сколько люмен вам понадобится от следующей лампочки.