Схемы ламп энергосберегающих: Схема энергосберегающей лампы – СамЭлектрик.ру

Схема энергосберегающей лампы на 220В разной мощности: устройство и особенности

На чтение 6 мин Просмотров 287 Опубликовано Обновлено

Любая схема энергосберегающей лампы на 220 В представляет собой совокупность электронных компонентов, каждый из которых выполняет свою, вполне конкретную функцию. Небольшие отклонения от базовой конструкции не оказывают принципиального влияния на ее общие характеристики. В основном эти различия проявляются в разнообразии типов цоколей, а также в потребляемой изделием мощности.

Виды энергосберегающих ламп

Различные формы колб и цоколей энергосберегающих ламп

Известные образцы энергосберегающих лампочек, к которым традиционно относят светодиодные, галогенные и люминесцентные модели, классифицируются по следующим признакам:

  • вид цоколя;
  • характерная для каждой модели температура свечения;
  • потребляемая мощность;
  • форма колбы.

По виду цоколя, используемого для фиксации лампочек в осветительном приборе, большинство из них делятся на резьбовые и штырьковые изделия.

Назначение цоколей ламп

Наиболее часто в быту встречаются резьбовые цоколи, которые вкручиваются в стандартные патроны различного диаметра (как для ламп накаливания).

При описании изделия этот элемент обозначается буквой «E» со следующим за ней числом, соответствующим диаметру в миллиметрах. Стандартный размер большинства выпускаемых ламп – E27, а изделия с диаметром E14 устанавливаются в светильники или бра.

Резьбовые цоколи чаще всего используются в лампах, предназначенных для уличного освещения (в ДРЛ и натриевых). Изделия штырькового типа подходят только для светильников особой конструкции и повышенной мощности. Они имеют разные модификации, отличающиеся количеством штырей (два или четыре), а их разъемы маркируются буквой «G» с соответствующим численным значком.

Типы освещенности в зависимости от цветовой температуры света

В зависимости от температуры свечения, измеряемой по Кельвину, каждый образец энергосберегающей лампы излучает свет «своего» оттенка.

  • Теплый свет с показателем 2700 К, внешне напоминающий желтый оттенок. Он очень похож на свечение обычных ламп накаливания.
  • Естественный белый с температурой 4200 К. Это так называемые «лампы дневного света», имеющие нейтральный колер.
  • «Холодное» свечение, как оттенок белого с температурным значением 6400 К.

Холодный свет близок к синему спектру и напоминает слегка голубоватый цвет. Лампочки с таким свечением чаще всего применяются в производственных помещениях и рассчитываются на мощность от 65 Ватт и более.

Энергосберегающие изделия различаются по форме колбы: спиралевидные, дугообразные и трубчатые.

Принципы работы

Принцип работы энергосберегающих излучателей рассмотрим на примере КЛЛ – компактного люминесцентного осветителя, пользующегося большим спросом у населения. Этот тип осветительных приборов состоит из полой стеклянной колбы, внутреннее пространство которой заполнено ртутными парами. При подаче высокого напряжения на контакты между его электродами формируется дуговой разряд, приводящий к образованию ультрафиолетового излучения, невидимого для человеческого глаза. Для его превращения в видимый свет внутренние стенки колбы покрываются люминофором, позволяющим получать яркое свечение.

При его сравнении с тем же показателем для ламп накаливания схожей мощности световая отдача в этом случае заметно выше. Недостаток таких изделий – невозможность прямого включения в цепь питания 220 Вольт. Как следствие – обязательность применения специального преобразующего устройства, называемого электронным балластом.

Устройство ЛЛ

Устройство лампы

Под внешними конструктивными элементами располагается электронная схема лампы – она обозначается как ЭПРА или пускорегулирующий аппарат. Этот узел в полном составе имеется далеко не в каждой модели «экономки». Там же где пусковой регулятор установлен в классической комплектации, схема эконом лампы состоит из следующих основных модулей и деталей:

  • пусковой конденсатор, обеспечивающий получение мощного импульса, необходимого для запуска схемы;
  • сетевой фильтр, позволяющий снизить уровень радиочастотных помех до приемлемого уровня – избавиться от эффекта мерцания;
  • емкостный фильтр, сглаживающий пульсации токовой составляющей;
  • ограничивающий ток дроссель, необходимый для защиты от перегрузок;
  • биполярные транзисторы и драйвер.

Схема лампочки содержит в своем составе предохранитель, защищающий ее от выхода из строя при резких скачках напряжения, и ряд дополнительных элементов.

Составляющие схемы балласта и особенности его работы

Электронный балласт энергосберегающей лампы фирмы DELUX

В состав электронного балласта входят формирователь, транзисторный ключ, а также выходной трансформатор с элементами резонансного запуска. Порядок работы этого блока:

  1. Формируемый в задающем модуле импульс тока поступает на базу транзистора и приводит к его открытию.
  2. Сразу же вслед за этим происходит заряд конденсатора, скорость которого определяется дополнительными элементами схемы.
  3. С выхода транзисторного ключа импульсы поступают на малогабаритный трансформатор.
  4. С его вторичной обмотки через резонансный контур с конденсатором пониженное импульсное напряжение подается на контакты лампы.
Принципиальная схема электронного балласта для ЛЛ

Формируемое в трубке свечение характеризуется присущей только ей резонансной частотой, зависящей от емкости подключаемого в параллель конденсатора. В начальный момент при зажигании величина импульсов достигает до 600 Вольт, что вынуждает применять специальные меры защиты от перенапряжений. Сделать это удается за счет применения в схеме шунтирующего конденсатора, позволяющего сразу же после пробоя «срывать» резонанс и переводить лампу в рабочее состояние с постоянным свечением. Его прерывание возможно только после срабатывания выключателя, установленного в самом осветительном приборе.

Порядок восстановления и необходимость в ремонте

Паз между верхней и нижней частью корпуса

При возникновении неисправностей в энергосберегающей лампочке следует разобрать ее на составные части. Для этого придется проделать следующие операции:

  1. Отсоединить две сборные половинки, а затем снять колбу.
  2. Посредством омметра, заряженного свежей батарейкой, «прозвонить» обе спирали накала на предмет отсутствия в них обрыва.

    Штыри, к которым прикручены провода

  3. При его обнаружении можно попытаться использовать хотя бы одну из них.
  4. Для этого необходимо перемкнуть сгоревшую ветвь посредством резистора номиналом 22 Ома и мощностью порядка 1-2 Ватта.

При проведении этой операции потребуется демонтировать шунтирующий спираль диод, если он есть в схеме.

Все эти действия справедливы для схем энергосберегающих ламп на 20 Вт, не более.

При перегорании спиралей в осветительных изделиях мощностью свыше 30 Ватт с большой вероятностью выйдет из строя ключевой транзистор. Для восстановления работоспособности схемы следует заменить их новыми деталями. В единичном случае ремонт изделия, стоящего копейки, не имеет смысла – гораздо проще купить новый балласт.

Опасность ЛЛ и рекомендации по использованию

Наличие ультрафиолетового компонента в излучении энергосберегающей лампы опасно для здоровья человека. Это отрицательно сказывается на состоянии большинства жизненно важных органов:

  • воздействие УФ излучения вредно для кожи и приводит к ее раннему старению;
  • возможны такие нарушения, как аллергия, экзема и псориаз;
  • нередко ультрафиолет вызывает приступы эпилепсии, мигрени, а также ухудшает общее состояние организма.

Сила опасного излучения зависит от места установки ЛЛ и расстояния до облучаемого объекта. В связи с этим их не рекомендуется использовать в светильниках, устанавливаемых на стол или навешиваемых на стены. Это тем более важно, если принимать во внимание опасность воздействия излучения на зрение человека.

Образцом практически безопасного излучателя является лампа ЛБО О8М 36 Н с электрической схемой которой можно ознакомиться в любом справочнике. При своевременном принятии защитных мер организационного характера эксплуатация энергосберегающих излучателей, как правило, не вызывает особых затруднений.

СХЕМЫ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП — PDF Free Download

1 СХЕМЫ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП 2013

2 Компактные энергосберегающие лампы Сегодня люди все чаще стали использовать в быту энергосберегающие лампы. Популярность этих ламп вызвана, прежде всего, их экономичным потреблением энергии. Ведь энергосберегающая лампа позволяет сэкономить деньги. В отличие от лампы накаливания ЭСЛ дает больший световой поток при меньшей потребляемой мощности. Устанавливается энергосберегающая лампа в такой же патрон, что и обычная лампа накаливания. Достоинства ЭСЛ очевидны, в то время как недостатков практически нет. Поэтому неудивительно, что многие люди уже давно перешли на использование так называемых экономок вместо обычных лампочек накаливания. Компактная энергосберегающая лампа является разновидностью люминесцентных ламп, уже ставших нам привычными. Данные ЭСЛ легко устанавливаются в патрон вместо лампы накаливания. В нашу жизнь уже прочно вошли лампы такого типа. И вскоре их будут называть не «энергосберегающими лампами», а просто «лампами». Рис.1. Энергосберегающие лампы 1. Как устроена энергосберегающая лампа Устройство практически всех энергосберегающих ламп одинаковое. В состав лампы входит несколько деталей. Газоразрядная трубка это видимая часть лампы, излучающая свет. Газоразрядная трубка соединяется с корпусом. В корпусе находится внутренняя часть лампы, представляющая собой электронную схему пуска и питания. По-другому эту схему называют электронным балластом. Электронная схема выполняет задачу зажигания лампы. 2

3 Рис.2. Устройство компактной энергосберегающей лампы. Цоколь имеет контакты для питания лампы и резьбу для вкручивания в патрон. Обычная лампа накаливания имеет практически такой же цоколь, что и ЭСЛ. Устанавливать компактную энергосберегающую лампу можно в небольшие светильники. Существует несколько типов цоколей, которые распространены: G4, GU10, E40, E27, E14, G5.3. Рис.3. Типы цоколей энергосберегающих ламп. Энергосберегающие лампы с цоколем Е40, Е27 и Е14 можно устанавливать в патроны, предназначенные для обычной лампы накаливания. Е27 патрон стандартный бытовой, имеет резьбу 27 мм, Е14 уменьшенный патрон, резьба которого 14 мм, Е40 патрон с резьбой 40 мм, относится к стандартным промышленным патронам. 3

4 Трубка, запаянная с двух сторон, называется колбой энергосберегающей лампы. Электроды находятся на противоположных концах этой колбы. ЭС лампа имеет изогнутую колбу, покрытую слоями люминофора. Эта колба содержит инертный газ и небольшое количество ртутных паров. Ионизация паров ртути является причиной свечения лампочки при подключении к ней питания. Когда на электроды подается напряжение, через них течет ток прогрева. Он разогревает электроды, из-за чего протекает термоэлектронная эмиссия. Когда электроды достигают определенной температуры, они испускают поток электронов. Сталкиваясь с атомами ртути, электроны вызывают излучение ультрафиолета, после чего ультрафиолетовое излучение попадает на люминофор, который преобразовывает это излучение в видимый свет. Цветовая температура лампы зависит от типа люминофора, она может быть К. Помните, что пары ртути опасны для организма человека, поэтому если энергосберегающая лампа разбилась очень важно правильно утилизировать осколки и обработать место. Вы ни когда не задумывались почему в энергосберегающей лампе колба имеет причудливо изогнутую форму? Поверьте это сделано не с проста. Изогнутая форма колбы позволяет уменьшить длину всей лампы. За счет спиральной намотки длину самой газоразрядной трубки можно увеличить при этом длина лампы при такой форме будет уменьшена. Если бы этого не делали то не каждая такая лампа помещалась в обычный светильник или люстру. Для изготовления корпуса лампы применяется негорючий пластик. Колба люминесцентной лампы крепится в верхней части. Пускорегулирующее устройство, соединительные провода и предохранитель находятся в корпусе. На поверхности лампы есть маркировка, в ней указана цветовая температура, мощность, напряжение питания. Внутри корпуса ЭСЛ находится круглая печатная плата (см.рис.2). На ней собран высокочастотный преобразователь. В результате использования довольно высокой частоты преобразования нет того «моргания», которое свойственно лампам с электромагнитным балластом (где используется дроссель), работающим на частоте 50 Гц. Современные лампы имеют пускорегулирующий аппарат, оснащенный помехозащитным фильтром. Фильтр защищает от появления помех в сети электропитания. Добраться до электронной схемы легко. Внимательно рассмотрите лампу, лучше использовать перегоревшую. Кажется, что корпус лампы разобрать невозможно. Но это ошибочное мнение. Ближе к колбе в верхней части лампы есть неглубокая канавка. Возьмите небольшую отвертку или узкое лезвие и попытайтесь разделить корпус. После небольшого усилия у вас в руках будет уже две части. В первый раз могут возникнуть сложности, зато потом эта операция будет занимать считанные секунды. Рис.4. Корпус лампы отделен от колбы. 4

5 После отделения цоколя от колбы, эти элементы соединяются между собой проводами которые необходимо аккуратно отделить от платы. Сделать это можно с помощью паяльника, нагрев место пайки, либо просто разрезав провода (но режьте так чтобы, потом можно было их восстановить). Рис.5. Подключение платы к цоколю. В некоторых видах ламп провода, которые идут от электронной платы в газоразрядную трубку, просто намотаны на специальные штырьки. После того как провода будут откинуты только тогда вы сможете выполнить дальнейший осмотр и диагностику лампы. Далее отсоедините цоколь от электронного блока. Для удобства наращивания проводов, их нужно разрезать посередине. Рис.6. Подключение газорозрядной трубки. Внутри вы увидите круглую плату. Это и есть внутреннее устройство энергосберегающей лампы благодаря которому она работает. Проводки от колбы примотаны к четырем штырькам, имеющим квадратное сечение. Они расположены попарно по краям платы. Никакой пайки проводов нет, они именно примотаны, на что стоит обратить внимание. Предохранитель является основным элементом схемы. Он защищает от перегорания все компоненты электронной платы. Иногда вместо предохранителя используется входной ограничительный резистор. Когда в лампе возникает какая-либо неисправность, в цепи растет ток, что приводит к сгоранию резистора, тогда цепь питания разрывается. 5

(adsbygoogle = window.adsbygoogle || []).push({});

6 Рис.7. Ограничительный резистор защиты. Один вывод резистора соединен с платой, а второй с резьбовым контактом цоколя. Усажен резистор в термоусадочной трубке. Пульсации выпрямленного напряжения сглаживает конденсатор. Дроссель или тороидальный трансформатор имеет кольцевой магнитопровод, на нем расположены как правило 3 обмотки. Мигание лампы при частоте сети 50 Гц случается 100 раз в секунду. Поэтому энергосберегающая лампа может неблагоприятно сказываться на общем физическом состоянии человека, его работоспособности, особенно если он находится в условиях такой освещенности длительное время. Все эти вредные составляющие устранены в современных электронных балластах. Поэтому на здоровье окружающих не оказывается никакого негативного влияния. Рис.8. Конденсатор сглаживания пульсаций выпрямленного напряжения. Современный электронный балласт представляет собой небольшую электронную схему, в ней реализованы функции зажигания лампы без миганий, а также плавный разогрев спиралей катодов лампы. В современной энергосберегающей лампе происходит свечение газа с частотой кгц. Шума при работе абсолютно нет, а электромагнитное поле практически отсутствует. На высокой частоте (30-100кГц) за счет близкого к единице коэффициента потребления электроэнергии формируется повышенная светоотдача. 6

7 Рис.9. Диодный мост выпрямленного напряжения. Лампа может зажигаться с полным накалом практически сразу, либо яркость может нарастать постепенно. Это зависит от схемы балласта. В некоторых лампах процесс нарастания яркости может занимать пару минут. В таком случае сразу после включения наблюдается полумрак. К сожалению, на энергосберегающей лампе не указывают, какой используется алгоритм включения. Понять алгоритм можно только после того, как вы вкрутили лампочку в патрон. 2. Принцип работы энергосберегающей лампы Компактные энергосберегающие лампы работают так же, как и обычные люминесцентные лампы с тем же принципом преобразования электрической энергии в световую. Трубка имеет на концах два электрода, которые нагреваются до градусов и испускают множество электронов, ускоряемых приложенным напряжением, которые сталкиваются с атомами аргона и ртути. Возникающая низкотемпературная плазма в парах ртути преобразуется в ультрафиолетовое излучение. Внутренняя поверхность трубки покрыта люминофором, преобразующим ультрафиолетовое излучение в видимый свет. К электродам подводится переменное напряжение, поэтому их функция постоянно меняется: они становятся то анодом, то катодом. Генератор подводимого к электродам напряжения работает на частоте в десятки килогерц, поэтому энергосберегающие лампы, по сравнению с обычными люминесцентными лампами, не мерцают. Разберём работу энергосберегающей лампы на примере наиболее распространённой схемы (рис.10, лампа мощностью 11Вт). Схема на рис.10 состоит из цепей питания, которые включают помехозащищающий дроссель L2, предохранитель F1, диодный мост, состоящий из четырёх диодов 1N4007 и фильтрующий конденсатор C4. Схема запуска состоит из элементов D1, C2, R6 и динистора. D2, D3, R1 и R3 выполняют защитные функции. Иногда эти диоды не устанавливают в целях экономии. При включении лампы, R6, C2 и динистор формируют импульс, подающийся на базу транзистора Q2, приводящий к его открытию. После запуска эта часть схемы блокируется диодом D1. После каждого открытия транзистора Q2, конденсатор C2 разряжен. Это предотвращает повторное открытие динистора. Транзисторы возбуждают трансформатор TR1, который состоит из ферритового колечка с тремя обмотками в несколько витков. На нити поступает напряжение через конденсатор C3 с повышающего резонансного контура L1, TR1, C3 и C6. 7

8 Рис.10. Схема энергосберегающей лампы. Трубка загорается на резонансной частоте, определяемой конденсатором C3, потому что его ёмкость намного меньше, чем ёмкость C6. В этот момент напряжение на конденсаторе C3 достигает порядка 600В. Во время запуска пиковые значения токов превышают нормальные в 3-5 раз, поэтому если колба лампы повреждена, существует риск повреждения транзисторов. Когда газ в трубке ионизирован, C3 практически шунтируется, благодаря чему частота понижается и генератор управляется только конденсатором C6 и генерирует меньшее напряжение, но, тем не менее, достаточное для поддержания свечения лампы. Когда лампа зажглась, первый транзистор открывается, что приводит к насыщению сердечника TR1. Обратная связь на базу приводит к закрытию транзистора. Затем открывается второй транзистор, возбуждаемый противоположно подключенной обмоткой TR1 и процесс повторяется. 3. Неисправности энергосберегающих ламп. Конденсатор C3 часто выходит из строя. Как правило, это бывает в лампах, в которых используются дешёвые компоненты, расчитанные на низкое напряжение. Когда лампа перестаёт зажигаться, появляется риск выхода из строя тназисторов Q1 и Q2 и вследствие этого — R1, R2, R3 и R5. При запуске лампы генератор часто оказывается перегружен и транзисторы часто не выдерживают перегрева. Если колба лампы выходит из строя, электроника обычно тоже ломается. Если колба уже старая, одна из спиралей может перегореть и лампа перестанет работать. Электроника в таких случаях, как правило, остаётся целой. Иногда колба лампы может быть повреждена из-за деформации, перегрева, разницы температур. Чаще всего лампы перегорают в момент включения. 4. Ремонт энергосберегающих ламп. Ремонт обычно заключается в замене пробитого конденсатора C3. Если перегорает предохранитель (иногда он бывает в виде резистора), вероятно неисправными оказываются транзисторы Q1, Q2 и резисторы R1, R2, R3, R5. Вместо перегоревшего предохранителя 8

9 можно установить резистор на несколько Ом. Неисправностей может быть сразу несколько. Например, при пробое конденсатора, могут перегреться и сгореть транзисторы. Как правило, используются транзисторы MJE Для того, чтобы сделать режим работы лампы более мягким, энергосберегающую лампу можно модернизировать. 5. Схемы энергосберегающих ламп. Схемы энергосберегающих ламп, как правило, очень похожи. Рис.11. Схема энергосберегающей лампы Osram Рис.12. Схема энергосберегающей лампы Philips 9

10 6. Лампы энергосберегающие технические характеристики и параметры Рассмотрим основные вопросы, которые следует знать при замене «лампочек Ильича» на лампы энергосберегающие: характеристики и параметры, на которые следует прежде всего обращать внимание при выборе, и какую сумму можно сэкономить с их помощью. Как и другие электротехнические приборы, ЭСЛ имеют ряд показателей, на которые следует обращать внимание при покупке. Прежде всего, к ним относятся их эксплуатационные параметры и технические характеристики Основные параметры энергосберегающих ламп При выборе и покупке обратите внимание на следующие эксплуатационные параметры ламп: 1. Размер лампы. Как известно энергосберегающие лампы отличаются большими размерами, чем лампы накаливания, поэтому перед покупкой обязательно проверьте, поместится ли они внутрь светильника (в первую очередь это касается шарообразных закрытых плафонов). 2. Форма. ЭСЛ бывают разных форм, самые распространенные это U-образные в виде подковок и спиралевидные (понятно по названию). Как правило, форма не влияет на характеристики работы, и единственное отличие состоит в цене: из-за дорогостоящей технологии производства стоимость спиралеобразных моделей немного больше. 3. Размер и тип цоколя. Как и лампы накаливания, ЭСЛ могут иметь традиционный широкий цоколь Е 27 и узкий Е 14 (последний чаще всего встречается в небольших светильниках). Перед покупкой осмотрите осветительные приборы, чтобы выбрать лампу с нужным типом цоколя. 4. Цвет излучаемого света. ЭСЛ могут излучать свет как холодного, так и теплого оттенков. Лучше выбрать модель, свет которой будет гармонировать с цветовой палитрой помещения. Более подробно о выборе лампы по этому критерию рассмотрим дальше Технические характеристики энергосберегающих ламп Обязательный критерий, на который следует обратить внимание, выбирая лампы энергосберегающие — технические характеристики. 1). Одним из основных показателей является мощность, величина которой определяет количество электроэнергии, потребляемой лампой. Величина мощности разных ЭСЛ может составлять от 3 до 200 Вт, но в быту обычно используют лампы с показателями Вт. Для того чтобы определить, лампы какой мощности хватит для освещения комнаты, следует учесть, что ЭСЛ благодаря более эффективной светоотдаче излучает в 5 раз больше света, чем такой же мощности лампа накаливания. То есть, для полноценной замены 100-ваттной старой лампы, понадобиться 20-ваттная ЭСЛ. Узнать этот показатель для конкретной модели лампы просто: производитель всегда указывает его на упаковке. 2). Не менее важной характеристикой является срок службы, показывающий, на какое количество часов работы рассчитана лампа. По этому показателю ЭСЛ также оставляют лампочки Ильича далеко позади. Ведь у них нет тонкой вольфрамовой нити, перегорание которой вызывает быстрый выход из строя последних. 10

11 В газоразрядных люминесцентных лампах используется совершенно другая технология: электрический ток ионизирует газ, которым заполнена лампа, а ионы, в свою очередь, вызывают свечение люминофора, расположенного на ее стенках. Поэтому даже самые доступные энергосберегающие лампы отличаются сроком службы в 8 раз превосходящий аналогичный у ламп накаливания, а именно 7 8 тыс. часов. А более дорогостоящая продукция таких всемирно известных производителей, как Philips, General Electric или OSRAM, может проработать 15 тыс. часов. В виду того что срок службы является одной из основных технических характеристик энергосберегающих ламп этот параметр обязательно указывается на упаковке. 3). Кроме производства видимого света, лампы затрачивают электроэнергию на невидимое человеческому глазу, и поэтому бесполезное, излучение в ультрафиолетовом и инфракрасном диапазонах спектра. В связи с этим при выборе ЭСЛ большое значение имеет величина светового потока характеристики, которая дает оценку света по степени его воздействия на органы зрения. Она показывает, сколько видимого света излучает лампа. Чем качественнее продукция, тем выше будет этот показатель. Световой поток измеряется в люменах (лм), его показатель также обязательно указывают на упаковке лампы (Φv). 4). Основным показателем КПД энергосберегающей лампы является световая отдача. В идеальном случае, возможном только теоретически, вся электроэнергия, которую потребляет осветительный прибор, расходуется на излучение света, световая отдача прибора в этом случае составляла бы 683 лм/вт (из курса физики, при максимальной спектральной световой эффективности монохроматического излучения с длиной волны 555 нм ). Но в действительности большая часть электричества уходит на излучения тепла и света в невидимых частях спектра. Световая отдача ламп накаливания составляет всего лишь лм/вт; показатель энергосберегающих ламп немного выше, но также далек от идеала: лм/вт. Кстати, именно на величине световой отдачи основана система классификации энергоэффективности осветительных приборов. Всего есть 7 классов энергоэффективности ламп, для их обозначения используют латинские буквы от А до G. В этой системе лампы накаливания занимаю последние места Е и F, а энергосберегающие лампы лидируют А и В. Величину световой отдачи, в отличие от предыдущих характеристик, не указывают на упаковке, но ее можно вычислить самостоятельно: для этого достаточно разделить показатель светового потока, на мощность лампы. 4). Цветовая температура также важная характеристика, показывающая, свет какого оттенка, холодного или теплого, излучает лампа. Измеряют эту величину в Кельвинах (К). За ноль в шкале цветовых температур принято теоретическое идеально черное тело, и его показатель составляет 273 градусов Цельсия. Излучением света ЭСЛ обязана люминофору. Разный химический состав люминофора приводит к тому, что лампа излучает свет в разных участках видимого спектра. Эта особенность энергосберегающих ламп, является их бесспорным преимуществом, она позволяет подобрать оптимальное освещение для любого типа помещения. 11

12 Рис.13. Цветовая температура ламп. Показатель цветовой температуры, как правило, также указывается на упаковке изделия, но как разобраться, что обозначает конкретное его значение? Цветовая температура энергосберегающих ламп может составлять от 2500 до 6500 К. Различают такие их категории: 2700 К лампа с такой цветовой температурой излучает теплый белый цвет, более всего похожий на свет привычных нам «лампочек Ильича». Лучше всего использовать такие модели в жилых помещениях К свет, излучаемый лампой, имеет нейтральный белый цвет. Широкое распространение такие модели не получили К излучение лампы с такой цветовой температурой имеет холодный белый оттенок, их лучше использовать в рабочих помещениях, офисах и общественных зданиях. Выбирая лампы этого типа, лучше обратить внимание на более мощные модели, так как холодный оттенок делает их свет приглушенным К эти лампы называются дневными, их свет резкий, с выраженным холодным оттенком. Такое освещение создает дополнительную нагрузку на органы зрения и нервную систему, поэтому применяется в основном для освещения улиц, больших производственных помещений, театральных сцен и т. п На что следует обращать внимание при покупке энергосберегающих ламп Согласитесь, что при покупке ламп накаливания мы все обращаем внимание, прежде всего, на ее мощность, так как именно от этого показателя зависит яркость. Для ЭСЛ это правило не действует, и при выборе следует обращать внимание на величину светового потока. Например, есть две лампы разных производителей, обе ламы имеют одинаковую мощность, скажем 10 Вт каждая. Первая лампа создает световой поток в 600 лм, вторая 900 лм. Если вы читали эту статью с самого начала, то из приведенных чисел вам будет понятно, что вторая лампа светит ярче, чем первая при той же мощности. Таким образом, мощность ЭСЛ не всегда соответствует ее яркости, и на практике часто оказывается, что более мощная продукция одного производителя явно проигрывает по яркости менее мощным лампам конкурента. Особенно четко это прослеживается при сравнении новых энергосберегающих ламп, отличающихся более высоким КПД и отличной светоотдачей, с более старыми моделями. Всего лишь обращая внимание на указанные на упаковке технические характеристики, 12

13 можно выбрать энергосберегающую лампу с меньшим энергопотреблением, большей яркостью и приемлемой стоимостью. 7. Экономия от энергосберегающих ламп реальность или миф. Технические характеристики энергосберегающих ламп мы рассмотрели, теперь давайте поговорим об экономии. Экономия при использовании энергосберегающих ламп происходит за счет более длительного срока работы и меньшего потребления электроэнергии. Однако многие люди скептически относятся к такой экономии, мол, хоть и ЭСЛ имеют большой срок службы, но за счет своей дороговизны не окупаются вообще. Давайте подсчитаем реально ли сэкономить, установив дома ЭСЛ. Проведем несложные арифметические подсчеты: 1. Возьмем энергосберегающую лампу Philips extra light мощностью 20 Вт (0,02 квт). Средняя стоимость такой лампы на май 2015 года — 4 $, а ее срок службы составляет 10 тыс. часов. Давайте посчитаем, сколько электроэнергии потребляет такая лампа. Итак, срок службы лампы 10 тыс. часов, за это время она потребляет: ( ) = 200 квт/часов электроэнергии (тарифы ее для населения могут меняться, поэтому на данный момент условно оценим стоимость 1 квт/ч в 0,05 $). То есть, счет за потребленное электричество и стоимость лампы составит следующую сумму: 4 $ + (200 0,05 $) = 14 $. 2. Проведем те же расчеты для лампы накаливания. Для примера возьмем лампу мощностью 100 Вт, средний срок службы 1000 часов. Так как яркость лампы накаливания в 5 раз меньше, чем у ЭСЛ, а срок эксплуатации короче в 10 раз, то для равноценной замены придется использовать 10 лампочек мощностью 0,1 квт (100 Вт), каждая из которых стоит 0,2 $. Их общая стоимость составит: 0,2 $ 10 = 2$. За часов лампа израсходует: = 1000 квт/ч электричества. Общие затраты потребителя будут следующими: 2$ + (1000 0,05 $) = 52 $. То есть, всего одна энергосберегающая лампа поможет сэкономить: = 38 $. 13

Схемы энергосберегающих ламп. — Мысли злого плебея — ЖЖ

11:27 pm —

Схемы энергосберегающих ламп.

Какие у меня есть схемы энергосберегающих ламп и балластов к люминисцентным лампам.

Люминисцентные лампы сейчас неактуальны из-за запрета их со следующего месяца, но для памяти пусть будет этот пост.

У них у всех два недостатка: транзисторы работают в линейном режиме и маленький дроссель. Если менять транзистор на большего размера, то надо параллельно переходу база-эмиттер и эмиттерному резистору припаять дополнительный резистор, он необходим для уменьшения усиления транзистора. Уменьшать усиление транзистора необходимо из-за того, что у транзисторов h31 увеличивается при увеличении мощности и транзисторы переключаются не из-за насыщения сердечника «кольца» положительной обратной связи, а из-за эффекта Кирка в транзисторах, то есть недостатка величины h31 для дальнейшего увеличения тока коллектора. Подбирать номинал этих двух резисторов можно по осциллографу, то есть начать с резистора номиналом 47 Ом и последовательно его уменьшать до тех пор, пока частота переключений не приблизится к резонансной и дальше увеличиваться не будет. Резонансной частоты достичь не удастся, она все равно будет ниже. Если нет осциллографа, то уменьшать номинал до тех пор, пока лампа не потухнет, а потом впаять резистор немного большего сопротивления. Если эти резисторы не монтировать, то будет перегруз лампы, дросселя и конденсатора 47нФ, так как частота может опуститься до резонансной для колебательного контура образованного конденсатором 47нФ и дроселем. В результате может разрушиться даже конденсатор 47нФ.

светильник ВУШК-675851-002

dial NHSB23 2700K E27 220-240V~50Hz 23W 170mA

балласт fintar dr184b

балласт fintar ebfl418

балласт fintar mcur418

балласт feron EB52 : EB315 E/B T8 2x36W 230V/50Hz 0.99C ABS CE

балласт TDM EB-T8-118-EA3

балласт ETL-118-A2 1Х18ВТ Т8/G13 ASD

светильник TDM Electric ЛПО136

каждый день 20w

лампочка народная 25Вт НЛ-DS-25Вт-4000K-E27

nakai 7Вт

nakai 11Вт

nakai 18Вт

nakai 20Вт

navigator ncl-sf10 20Вт

navigator ncl-sf10 30Вт

navigator ncl-sh 45Вт

tc-3u37a

\TDM ELECTRIC КЛЛ-25Вт-4000K-E27

экономка 15w

Схемы энергосберегающих ламп

 

  Здесь представлены схемы популярных энергосберегающих ламп дневного света.
Даже если вы не нашли нужную лампу, ищите аналог, принцип у схем один.

——————————————————

 

 


——————————————————
 

——————————————————
 

 
——————————————————
——————————————————
 

——————————————————
 


——————————————————
 

——————————————————
 


——————————————————

——————————————————-
 

——————————————————
 

——————————————————
 
 


——————————————————

 
——————————————————
 
 


——————————————————
Адрес этой статьи: http://radio-hobby.org/modules/news/article.php?storyid=453
Оригинал: http://www.pavouk.org/hw/lamp/en_index.html
Энергосберегающие лампы
Принцип действия

Ремонт энергосберегающих ламп

Схемы энергосберегающих ламп

Питание ламп дневного света (ЛДС)

Термисторы PTC для энергосберегающих ламп



1). Электрическое поле Земли - источник энергии.

2). Ветродвигатель для ветряка — 1

3). Ветродвигатель для ветряка — 2

4). Получение электрической энергии — 1

Схемы энергосберегающих ламп | ОСК Лампы.РФ

На сегодняшний день существует два вида энергосберегающих источников света: люминесцентные лампы и светодиоды. Газоразрядные КЛЛ состоят из стеклянной колбы в виде компактно изогнутой тонкой трубки с электродами и нитью накаливания, цоколя с патроном и платы электронного балласта, необходимого для зажигания КЛЛ.

Схема преобразовывает стандартное переменное напряжение в постоянное, которое подается на полупроводниковый генератор ВЧ, вырабатывающий высокочастотные импульсы. Эти импульсы питают лампу. Производители используют при изготовлении КЛЛ различные схемы в зависимости от используемых компонентов. Длительность срока службы прибора во многом зависит от качества электроники, установленной на плате балласта. По этой причине рекомендуется покупать энергосберегающие лампы авторитетных торговых марок с наиболее продолжительной гарантией.

Устройство светодиодных приборов

Светодиодные лампы относятся к полупроводниковым источникам света. Светодиод представляет собой кристалл с металлической прослойкой-катодом и нитью-анодом, залитый прозрачным компаундом. В состав электросхемы источника света, помимо полупроводникового кристалла, входят источник питания для силовых и управляющих цепей, контроллеры, электронные стабилизаторы, соединительные кабели. Особенность схемы заключается в том, что светодиод нуждается в подаче точных параметров напряжения и тока.

Светодиодные приборы производятся в виде ламп, модулей, лент. Они состоят из кластеров белых или разноцветных диодов, установленных на печатной плате. Характеристики этих твердотельных цифровых приборов можно точно регулировать с помощью специальных систем управления.

Светотехника с полупроводниковыми кристаллами одного цвета излучает свет определенного оттенка. Приборы с источниками света RGB используются для получения миллионов оттенков различных цветов. Современные мультиспектральные модули оснащаются, помимо RGB, дополнительными цветами для расширения диапазона.

Светодиодные приборы могут питаться не только от внешнего блока, но и непосредственно от сети. Они также оснащаются встроенными источниками тока. Многие производители выпускают модули с возможностью деления на отдельные отрезки. Плата с источниками света может помещаться в корпус.

РЕМОНТ И ПЕРЕДЕЛКА ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП

РЕМОНТ И ПЕРЕДЕЛКА ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП

ЭНЕРГОСБЕРЕГАЮЩАЯ ЛАМПА ОТ 12В

    Мотал на глаз и на память интерпритируя размер сердечников, по схеме непрерывной обмотки. Первой намотал коллекторную обмотку 10 витков проводом 0.4мм, второй базовою 6 витков проводом 0.2мм, проложил слой изоляции намотал внахлест нагрузочную обмотку проводом 0.1 получилось около 330-340 витков. В нагрузку подключил лампу от сканера 7w, устройство сразу заработало, чему свидетельствовал исходящий от лампы свет. Рядом лежала 13-ваттная энергосберегающая лампа со сгоревшей спиралью, решил попробовать осилит это детище подобную нагрузку, был приятно удивлен, при токе в пол ампера при напряжении 12 вольт лампа светит достаточно ярко.

    Так же работает от двух литий-ионных аккумуляторов, правда потребляя на 150 ма больше. Во едино спаял навесным монтажом (4 деталюги) и все это чудесным образом разместилось в оригинальном корпусе из под балласта на 220.

    Транзистор не особо греется, через пять минут работы на нем можно держать палец. Теперь эта конструкция поедет прямиком на дачу, где как обычно постоянно перебои с электричеством, можно будет чай попить или постель разложить при дневном свете.

 

Что можно сделать, если у Вас сгорела компактная люминесцентная лампа

    Хотя на эконом лампы, в зависимости от производителя, существует гарантия и даже до 3-х лет. Но потребители могут столкнуться с тем что лампочка перегорела, а у вас не сохранилась упаковка, чек покупки, магазин переехал в другое место т.е по каким-то независящим от вас причинам вы не можете обменять поломанную вещь. Мы решили предложить Вам воспользоваться оригинальным решением по использованию, перегоревших эконом ламп которое мы нашли на просторах огромного Интернет-ресурса и предлагаем его Вам.

    Помните, вы подвергаете жизнь опасности, попав под напряжение 220В!

    Проще всего её выбросить в мусор, ну а можно из неё сделать … другую, а если ламп сгоревших накопилось несколько, то можно заняться и …. ремонтом.
    Если вы хотя бы раз держали паяльник в руках, то эта статья для Вас.
    Вы сделать самостоятельно электронный баласт для ламп дневного света и включить лампу до 30 Ватт, без стартёра и дросселя, с помощью маленькой платки снятой с нашей эконом лампы. При этом она будет зажигаться мгновенно, при понижении напряжения не будет ‘Моргать’.

    Данная лампа перегорает двумя способами:
    1) горит электронная схема

    2) перегорает спираль накала

    Для начала выясняем, что же произошло. Разбираем лампу (очень часто собраны на защелках, более дешовые варианты склены).

    Отключаем колбу, откусываем провода питания:

    Прозваниваем накалы колбы (для принятия решения выбросить колбу или нет)

    Мне не повезло, перегорели обе спирали накала (первый раз в моей немалой практике, обычно одна, а когда сгорает схема то и ни одной). В общем если хотя бы одна сгорела колбу выбрасываем, если нет, то она рабочая, а сгорела схема.
    Рабочую колбу отлаживаем на хранение (до следующей сгоревшей экономки) и потом к рабочей схеме цепляем колбу. Так из нескольких делаем 1, а может и больше (как повезёт).
    А вот вариант изготовления лампы дневного света. Можно подключить, как и 6 Ваттную лампу с «китайского» фонаря (например, я обмотал её пластиком с зелёной бутылки, а схему спрятал в сгоревшее зарядное устройство, от мобильного телефона и получилась классная подсветка для аквариума) так и 30 Ваттную лампу дневного света:

 

Можно ли отремонтировать электронный балласт?

    Люминесцентные лампы с электронным балластом сегодня можно встретить повсеместно. Очень популярны настольные лампы с прямоугольными плафонами и двухколенным держателем. Во всех магазинах электротоваров уже продаются лампы, вворачиваемые в обычные патроны с круглой резьбой вместо классических ламп накаливания. В частности, петербургский метрополитен в последнее время напрочь избавился от ламп накаливания, заменив их люминесцентными. Преимущество таких ламп очевидно — продолжительный срок службы, низкое потребление электроэнергии при высокой светоотдаче (достаточно сказать, что 11-Ваттная люминесцентная лампа заменяет 75-Вт лампу накаливания), мягкий свет со спектром, близким к естественному солнечному свету.
    Ведущими производителями люминесцентных ламп являются фирмы Philips, Osram и некоторые другие. К сожалению, на отечественном рынке имеется достаточно китайских ламп низкого качества, которые выходят из стоя гораздо чаще, чем их фирменные собратья. Подробный рассказ об электронных балластах, о принципах работы, преимуществах, схемотехнических решениях есть в книге «Силовая электроника для профессионалов и любителей». Раздел книги называется «Балласт, с которым не утонешь. Новые методы управления люминесцентными осветительными лампами». Поэтому читатели, которым необходимо получить первоначальные
сведения об электронных балластах, могут обратиться к книге, ну а здесь рассматривается достаточно частный вопрос ремонта вышедших из стоя ламп.
    История появления этой статьи связана с приобретением автором лампы неизвестной фирмы (фото 1). Данная лампа безотказно работала в люстре несколько месяцев, однако по истечении этого времени она просто перестала зажигаться. Ничего не оставалось сделать, как разобрать лампу, аккуратно (с боков) поддев тонкой отверткой корпус (он состоит из двух половинок, скрепляющихся между собой тремя выступами-защелками).

    Разобранная лампа показана на фото 2. Она состоит из круглого цоколя, схемы управления (собственно электронного балласта) и пластмассового кружка, в который вклеена трубка, которая дает свет. При разборке лампы следует соблюдать осторожность, чтобы, во-первых, не разбить баллон и не повредить себе руки, глаза и прочие части тела, а во-вторых, чтобы не повредить электронную схему (не оторвать «дорожки») и корпус (пластмассовый).

    Исследования, проведенные с помощью мультиметра, показали, что в баллоне лампы перегорела одна спираль. На фото 3, которое получено уже после вскрытия баллона, видно, что спираль перегорела, затемнив люминофор в окрестностях. Было сделано предположение, что с электронным балластом ничего не случилось (это позже подтвердилось). С большой долей уверенности можно утверждать, что нить лампы — самое слабое место, и в подавляющем большинстве вышедших из стоя ламп будет наблюдаться скорее перегорание нити, нежели выгорание электронной части схемы.
    Кстати, об электронной схеме электронного баласта. Она показана на фото 4. Схема перерисована с печатной платы. Кроме того, на ней не показаны некоторые элементы, не затрагивающие основ работы балласта, а также не приведены номиналы. Балласт лампы представляет собой двухтактный автогенератор полумостового типа с насыщающимся трансформатором. Такой автогенератор хорошо описан в книгах и дополнительных пояснений не требует. На входе установлен диодный мост VD1-VD4 с фильтром С1, С2, L1. Конденсатор C1 препятствует проникновению высокочастотных помех в питающую сеть, конденсатор C2 служит фильтром сетевых пульсаций, дроссель L1 ограничивает пусковой ток и фильтрует ВЧ помехи. Дроссель L2 и конденсатор C3 являются элементами резонансного контура, напряжение в котором «зажигает» лампу. Конденсатор C4 — пусковой. Понятно, что при обрыве одной из нитей лампа уже не загорится.

    Очень важный элемент схемы — предохранитель F1. Если в схеме электронного балласта что-то случится (например, «выгорят» транзисторы полумоста, создав «сквозной» ток, или пробьется конденсатор C1, С2, или пробьется диодный мост), предохранитель защитит сеть от короткого замыкания и возможного пожара. На фото 5 этот предохранитель показан.

    Он представляет собой колбочку без классического держателя с длинными выводами, один из которых припаян к цоколю, а другой, к печатной плате балласта. Так что если предохранитель перегорел, скорее всего, что-то случилось в схеме балласта, и нужно проверять его элементы. А если нет, балласт наверняка цел.
    Самое интересное, что такую энергосберегающую лампу можно отремонтировать, и обойдется это дешевле, чем приобрести новую лампу. Она будет выглядеть, конечно, не так красиво, как промышленная, но вполне прилично (если все делать аккуратно). Итак, нужно приобрести сменный элемент для настольной лампы, например, такой, как показан на фото 6. Производителем этой лампы является итальянская фирма Osram, мощность лампы — 11 Вт, что соответствует 75 Вт лампы накаливания.

    На коробочке лампы есть интересная информация о потребляемой мощности других ламп, а также по надежности. Данная лампа мощностью 9 Вт заменит 60-Ваттную лампу накаливания, 9 Вт — 40- Ваттную, а 5 Вт — 25-Ваттную. Гарантированное время наработки на отказ — 10000 часов, что соответствует 10 лампам накаливания. Это — примерно 13 месяцев непрерывной работы. Цоколь дампы должен содержать четыре вывода, то есть две спирали (фото 7). У данной лампы правые два вывода относятся к одной спирали, левые два — к другой спирали. Если расположение спиралей неочевидно, всегда можно разыскать нужные выводы с помощью мультиметра — спирали имеют низкое сопротивление порядка нескольким Ом.

    Выводы лампы необходимо осторожно, не допуская перегрева, облудить припоем.

    Теперь займемся подготовкой основания, к которому будем крепить лампу. Кружок, похожий на имеющийся, залитый белой массой (фото 8), нужно изготовить новый и напильником подготовить площадку, к которой будет приклеена лампа (фото 9). Колбу лампы разбивать категорически не рекомендуется.

    Дальше лучше проверить, как зажигается лампа. Подпаиваем выводы лампы к балласту (фото 11) и включаем балласт в сеть. Для приработки стоит его потренировать, включая-отключая несколько раз и выдержав во включенном состоянии несколько часов. Лампа светится достаточно ярким светом, и при этом греется, поэтому ее лучше положить на дощечку и накрыть несгораемым листом. Когда тренировка проведена, разбираем эту конструкцию и начинаем монтаж лампы.

    Берем тюбик суперклея «Момент» и наносим на сопрягаемые поверхности несколько капель. Потом вставляем выводы в отверстия и плотно прижимаем детали друг другу, выдерживая полчаса в таком виде. Клей надежно «схватит» детали (фото 10). Лучше использовать этот клей, или дихлорэтан, поскольку для надежного крепления пластмасса в сопрягаемом месте должна немного расплавиться.

    Осталось собрать лампу. Впаиваем балласт в цоколь, не забыв о предохранителе. Заранее (до впайки) нужно припаять четыре провода, которыми лампа будет связана с балластом. Подойдет любой провод, ну лучше, чтобы это был провод типа МГТФ во фторопластовой термостойкой изоляции (фото 12). Собирается лампа тоже просто — достаточно уложить провода внутри цоколя, или скрутить их жгутиком, и затем защелкнуть фиксаторы. Отверстия от прошлого баллона в целях электробезопасности лучше заклеить кружочками, ввырезанными из упаковки от молочных продуктов.

    Отремонтированная лампа готова (фото 13). Ее можно ввернуть в патрон.
    В заключение отмечу, что можно достаточно просторно фантазировать на тему электронных балластов. К примеру, вставить лампу в красивый светильник и подвесить его к потолку, используя части от сгоревшей лампы.

ИЗГОТОВЛЕНИЕ БЛОКОВ ПИТАНИЯ ИЗ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП

 


Адрес администрации сайта: [email protected]
   

 

Ремонт энергосберегающих ламп своими руками

Автор newwebpower На чтение 8 мин. Просмотров 616 Опубликовано Обновлено

Электронная начинка энергосберегающей лампы

Энергосберегающие лампы 220 вольт, вкручиваемые в стандартный цоколь обычной лампочки накаливания, с точки зрения маркетинга считаются неразборными, и не подлежащими ремонту.

Но, многие мастера могут сделать ремонт энергосберегающих ламп своими руками, вскрывая корпус, разбираясь в электрической схеме, определяя и заменяя испорченные компоненты, тем самым продолжая срок службы светильника.

Поскольку внутри корпуса энергосберегающих ламп имеются сложные радиотехнические схемы, обеспечивающие работу источников света, то для их ремонта необходимы навыки работы с мультиметром, знание свойств используемых радиодеталей и общие познания в радиотехнике. Также потребуются соответствующие инструменты и оборудование.

Оценка выгоды от ремонта энергосберегающей лампы

Прежде всего, следует оценить целесообразность предстоящего ремонта энергосберегающей лампы 220 В. Если речь идет о единичном экземпляре, то будет выгодней заменить испорченный светильник новым, а старый сохранить в качестве предполагаемых запчастей для аналогичных ламп, которые выйдут из строя в будущем.

Ремонтировать одну лампу, без наличия запчастей — не выгодно

Но, если на руках имеются несколько неисправных энергосберегающих ламп, желательно от одного производителя, то часть их удастся починить, используя запчасти, вынутые из заведомо неподдающихся ремонту светильников. Иногда из двух неисправных светильников можно собрать одну работающую, но, в среднем, восстановить удается одину из четырех-пяти энергосберегающих ламп.

Поэтому, не стоит выбрасывать в мусор перегоревшую компактную люминисцентную лампу – в ней всегда найдутся исправные компоненты, которые можно использовать в качестве запчастей для других неисправных светильников. На видео ниже показан пример простого ремонта энергосберегающей лампы, осуществленного путем совмещения рабочих компонентов, изъятых у двух нерабочих светильников (излучающей трубки и электронного балласта).

Видео ремонта

Ремонт энергосберегающей лампы

Компактный люминесцентный светильник (КЛС) является лампой дневного света с изогнутой ради уменьшения габаритов газовой колбой с электронным балластом и цоколем, собранными в одном корпусе. Принцип действия люминесценции и ремонт светильников, использующих трубчатые лампы дневного света, описан предыдущих статьях данного раздела.

Устройство энергосберегающей лампы, называемой в народе «экономкой»

В КЛС принцип сохраняется тот же, только вместо громоздкого электромагнитного пускорегулирующего аппарата применяется электронный балласт, что позволяет уменьшить габариты и расширяет возможности управления работой энергосберегающей лампы. Некоторые КЛС поддаются диммированию, в том числе с помощью пульта управления, благодаря модернизированной схеме электронного балласта.

Поэтапный процесс ремонта компактной люминисцентной лампы

Для начала ремонта нужно разобрать корпус энергосберегающей лампы, который состоит из цокольной части и основания колбы. Винтовые соединения в корпусе, как правило, отсутствуют — соединены обе части энергосберегающей лампы при помощи защелок, наподобие пульта управления от телевизора или панелей сотового телефона. Поддевая подходящей отверткой защелки, разъединяют обе части светильника.

Вставить в зазор отвертку, чтобы отщелкнуть защелку

От спиралей колбы к электронному балласту энергосберегающей лампы отходят четыре провода – их следует отсоединить от контактов на плате. Примерное сопротивление спиралей, которое зависит от мощности лампы дневного света, составляет около десяти Ом. Если окажется, что одна из спиралей перегорела (бесконечное сопротивление), то не стоит сразу же выбрасывать данную колбу.

Прозвонка показывает, что одна из спиралей перегорела

В некоторых случаях, при перегоревшей одной спирали, отремонтировать светильник можно шунтированием выводов аналогичным сопротивлением, как у исправной нити накала. Таким образом, электрическая цепь будет восстановлена, а эмиссии одной спирали может оказаться достаточно для возникновения разряда и свечения газа.

Впаянный на плату в качестве шунта мощный резистор заменяет сопротивление перегоревшей спирали и возобновляет цепь

Впаянный резистор не должен касаться контактных площадок на плате, поэтому его следует изолировать при помощи термостойкой диэлектрической прокладки. Соблюдая осторожность, чтобы не оборвать выводы спиралей и провода от платы следует навинтить патрон на цоколь и проверить работоспособность энергосберегающей лампы. Процесс подобного ремонта продемонстрирован на видео:

Видео ремонта энергосберегающей лампы

Ремонт электронного балласта люминесцентных ламп

При перегорании спирали (обрыве нагрузки) электронный балласт также может выйти из строя, поэтому следует проверить его компоненты, следуя по пути прохождения тока. Будет целесообразно скачать схему данного светильника, но, его можно отремонтировать, разбираясь в обозначениях на самих деталях и плате.

Различные схемы электронных балластов энергосберегающих ламп

В некоторых схемах люминесцентных светильников от цоколя к плате идет токоограничивающий резистор, заключенный в термоизоляционную оболочку. Данный резистор ограничивает протекающие в схеме токи, тем самым предохраняя компоненты. В некоторых моделях энергосберегающих люминесцентных ламп резистор отсутствует или заменен на дроссель.

Местоположение входного токоограничивающего резистора

Чтобы вынуть плату из корпуса энергосберегающей лампы для более удобной проверки и ремонта, следует отпаять провода от резьбовой части и центрального контакта цоколя. В зависимости от производителя, схемы электронного балласта люминесцентных энергосберегающих ламп могут отличаться, но, в общем, они состоят из таких структурных блоков:

  • Выпрямитель на диодах или диодной сборке;
  • Сглаживающий конденсатор фильтра питания;
  • Силовые транзисторные ключи;
  • Импульсный трансформатор с обмотками обратной связи.
Внешний вид и расположение на плате основных элементов КЛС

Конденсаторы, резисторы, диоды, дроссели применяются для обеспечения взаимосвязей между компонентами электронного балласта энергосберегающей лампы. Для достижения компактности применяются миниатюрные резисторы SMD, не имеющие проволочных выводов.

Линиями указаны SMD резисторы на плате электронного балласта КЛС

Обмотки высокочастотных импульсных трансформаторов и дросселей электронного балласта люминесцентного светильника имеют небольшое сопротивление. Поэтому их прозвонка сводится к проверке целостности обмоток и наличия пробоя. Определить межвитковое замыкание можно только косвенным путем, исключив поломки других компонентов энергосберегающей лампы.

Проверка полупроводниковых компонентов светильника

В первую очередь следует проверить полупроводниковые приборы – диоды, транзисторы, стабилитроны. Поскольку на плате светильника выводы могут быть зашунтированы другими компонентами, проверяемые детали следует выпаять для тестирования.

В транзисторах должны прозваниваться при прямом подключении щупов мультиметра переходы база-коллектор и база-эмиттер. Во всех других возможных комбинациях сопротивление должно стремиться к бесконечности

Видео проверки транзистора


Но в электронных балластах энергосберегающих ламп встречаются составные транзисторы, в которых параллельно переходу коллектор-эмиттер подключен диод и полевые транзисторы (MOSFET). Прозвонка такого транзистора, без имеющейся информации об его свойствах, может ошибочно показать неисправность полупроводникового прибора – ведь в одном направлении будет прозваниваться встроенный диод. Следует изучить свойства проверяемых имеющихся в светильнике транзисторов, чтобы максимально достоверно их проверить.

Пример составного полевого транзистора

Подобные трудности с прозвонкой полупроводниковых компонентов электронного балласта светильника могут возникнуть при проверке двуханодных диодов – динисторов (DIAK). При прозвонке обычным тестером в обе стороны должно быть бесконечное сопротивление. Дополнительное изучение устройства и схемы ремонтируемого светильника поможет избежать ошибочных умозаключений.

Составные полевые транзисторы VT1, VT2 на схеме электронного балласта

На SMD резисторах указано их сопротивление, что в большинстве случаев позволит определить их исправность, не выпаивая из платы электронного балласта светильника. Без должной практики могут возникнуть трудности с демонтажем и установкой SMD резистора – для пайки подобных радиодеталей применяют паяльники, имеющие специфическую форму жала, для одновременного нагрева обеих контактных площадок.

Работа с SMD резистором

Чтобы выпаять из платы энергосберегающей лампы SMD резистор при помощи обычного паяльника, следует стараться одновременно прогреть площадки, быстро переставляя жало. Можно прогревать корпус неисправного резистора, и перевернув плату, дождаться, когда припой расплавится и деталь отпадет. Но в этом случае существует опасность перегреть дорожки и соседние радиодетали.

Сравнительные размеры и маркировка SMD резисторов

Не у всех мастеров имеется возможность приобрести на месте требуемые SMD резисторы, или выпаять из неисправного светильника. Поэтому, их можно заменить резисторами других типов, с идентичной мощностью и сопротивлением, разместив их в свободном пространстве энергосберегающей лампы, обеспечив надежную изоляцию выводов при помощи термоусадочной трубки.

Для пайки SMD элементов лучше применить паяльную станцию с тонким жалом, но можно воспользоваться обычным паяльником. Также нужно использовать флюс, предназначенный для SMD пайки. Поскольку SMD детали очень мелкие — обязательно понадобится пинцет, а увеличительное стекло уменьшит нагрузку на зрение. Процесс подобной пайки различных SMD деталей, в том числе и резисторов подробно описан на видео:

Видео. Как паять SMD


Таким образом, осуществляя компоновку работоспособных компонентов светильника или поочередно проверяя мультиметром радиодетали, можно найти неисправный компонент на плате светильника, и осуществить его замену, не имея профессионального измерительного оборудования, и не разбираясь в тонкостях работы самой схемы электронного балласта. Радиолюбителям и начинающим мастерам будет полезно видео с описанием нескольких различных ремонтов энергосберегающих ламп:

Видео ремонта энергосберегающих ламп

Зеленая технология: как использовать энергоэффективный свет

Снижают счета за электроэнергию не только более эффективное освещение. Компактные люминесцентные лампы (КЛЛ) и светодиоды не использовались бы сегодня во многих розетках, если бы не электроника, способная экономично управлять этими лампами. И все еще извлекаются уроки о том, как снизить затраты на системы освещения.

Возьмем, к примеру, люминесцентное освещение. Старые балласты, питающие люминесцентные лампы, были не более чем трансформаторами, которые питали ламповый газ, подавая высокое напряжение для нагрева нитей.Балласт также служит ограничителем тока при включенной лампе. Проблема с балластами старого образца заключалась как в их громоздкости, так и в неэффективности.

КЛЛ

стали популярны только с появлением схем электронного балласта, которые были одновременно экономичными и достаточно компактными, чтобы поместиться в цоколе патрона лампы. Сегодняшние драйверы CFL в основном представляют собой схемы импульсного источника питания, которые включают в себя коррекцию коэффициента мощности и защиту от таких условий, как короткое замыкание и обрыв лампы накаливания. В них вместо трансформаторов используется переключающая схема для генерирования высокого напряжения (около 500 В), которое первоначально приводит в действие люминесцентные лампы, и более низких напряжений (около 200 В), поддерживающих работу лампы.Люминесцентные лампы наиболее эффективны при работе на частотах 20 кГц и выше, генерируемых электронными переключателями. Работа на более высоких частотах также позволяет уменьшить размер балластных компонентов и сделать корпус более компактным.

Электронные балласты имеют не только КЛЛ. Линейные флуоресцентные лампы также стали электронными. С 2006 года нормативные акты Министерства энергетики предписывали так называемые рейтинги балластной эффективности — по сути, показатель энергоэффективности. Оценки таковы, что балласты трансформаторного типа недостаточно эффективны для многих наиболее распространенных люминесцентных ламп, используемых в цехах и фабриках.В том же году ЕС запретил использование магнитных балластов, вынудив их перейти на электронные балласты для продаваемых там люминесцентных ламп.

Балласты могут стать электронными, но не все из них имеют одинаковый уровень интеграции. Некоторые производители до сих пор разрабатывают свои собственные. «Стоимость была препятствием для использования однокристальных балластов», — говорит директор по маркетингу Fairchild Semiconductor Клаудиа Иннес. Но есть тонкости в управлении люминесцентной лампой, которые могут быть процессом обучения для некоторых производителей.«По сравнению с включением лампы накаливания необходимо учитывать большее количество условий и обеспечивать меры безопасности для различных видов отказов», — говорит она. «Многие дизайнеры не знают, как это сделать. Таким образом, микросхемы электронного балласта обеспечивают надежную защиту от сбоев, чтобы проблема не повредила весь балласт ».

Например, импеданс лампы изменяется с возрастом. Это может сместить частоту колебаний от наиболее эффективной рабочей точки. Чтобы проверить наличие неисправностей, схемы балласта должны следить за коэффициентом амплитуды (отношение пикового тока к среднеквадратичному).Коэффициент амплитуды, превышающий четыре, обычно означает, что срок службы лампы подошел к концу.

Затемнение — еще одна проблема. Балластные цепи обычно регулируют управляемый напряжением генератор на затемнение КЛЛ, но «если вы поместите регулируемый КЛЛ рядом с приглушенной лампой накаливания, вы заметите, что они не тускнеют в той же степени, и они не тускнеют так же. С точки зрения дизайна необходимо учитывать еще несколько вещей », — говорит Иннес.

Типичный электронный балласт сначала выпрямляет переменный ток, а затем преобразует полученный постоянный ток в сигнал в диапазоне 50 кГц с помощью переключателя MOSFET или IGBT.Это переключающее действие может генерировать гармоники в токе и напряжении. Эти искажения вызывают излучаемые помехи и снижают эффективность. Таким образом, электронные балласты обычно включают схемы коррекции коэффициента мощности (PFC) для компенсации. Микросхемы PFC в основном удерживают время включения в фиксированном соотношении с входным линейным напряжением, поэтому нагрузка кажется резистивной по отношению к линии переменного тока.

Микросхема управления балластом затем обрабатывает предварительный нагрев и зажигание, отслеживает условия, которые указывают на обрыв нити накала, и реализует переключение при нулевом напряжении конечной высоковольтной ступени.Высоковольтный каскад, который фактически подключается к лампе, обычно представляет собой полумост, питающий МОП-транзисторы или IGBT.

Страница 2 из 2

Использование одного или нескольких чипов для реализации этих функций часто зависит от того, как производители рассматривают компромисс между стоимостью компонентов и всей системой. «Каждое соединение — это точка отказа, и каждый выбранный и установленный компонент имеет свою стоимость. Тем не менее, некоторые люди создают свои собственные », — говорит Иннес.

Точечный светильник на светодиодах
Два года назад не существовало такого понятия, как светодиодный уличный фонарь.Все изменилось в 2006 году с появлением сверхъярких светодиодов. «Сейчас требуется менее 100 светодиодов, чтобы генерировать эквивалент натриевой лампы высокого давления», — говорит Cree Inc . Директор по развитию бизнеса Марк МакКлер.

CREE Inc. изобрела свою сверхъяркую светодиодную архитектуру в 2006 году, а остальное уже история. В настоящее время светодиоды используются в уличном освещении, офисном освещении и других сферах общего освещения, где снижение затрат на техническое обслуживание и электроэнергию компенсирует их более высокую цену.

Ключом к такому повороту событий стала разработка компанией CREE своего чипа питания EZBright LED.С тех пор другие производители выпустили версии светодиодов с высокой выходной мощностью. Но CREE разработала новую светодиодную топологию, которая, по ее словам, в два раза более эффективна, чем предыдущие чипы, и полагает, что она, возможно, на год опережает своих ближайших конкурентов.

Текущие исследования производителей светодиодов сосредоточены на повышении энергоэффективности и затрачиваемых люменов на доллар. Сегодня эти показатели составляют около 100 люмен / Вт и 40 люмен / доллар. Ожидается, что в 2010 году будет световая отдача 150 люмен / Вт при значительном снижении затрат.«Каждый раз, когда мы повышаем эффективность, появляется новая волна новых приложений», — говорит МакКлир.

Оказывается, преимущества светодиодов не ограничиваются эффективностью. «Муниципалитету стоит заменить лампочку так же, как купить новую лампу. Поскольку срок службы светодиодов в два-пять раз дольше, чем у обычных ламп, они позволяют избежать больших затрат на техническое обслуживание », — говорит МакКлир. Кроме того, их использование для наружного освещения дает преимущество для сна: «Когда вы заменяете желтую натриевую лампу на светодиоды, люди думают, что вы очистили место», — говорит МакКлир.«Это потому, что глаз имеет большую остроту зрения в диапазоне света светодиода. Камеры наблюдения лучше работают со светодиодной подсветкой, и люди действительно чувствуют себя в большей безопасности на парковочных палубах, освещенных светодиодами ».

Некоторые производители ламп теперь производят светильники для наружного освещения со светодиодами. В одном из них, Beta Lighting в Стертеванте, штат Висконсин, используются светодиоды CREE, сконфигурированные в виде световых полос, каждая из которых содержит 20 светодиодов. Бета добавляет световые полосы для получения осветительных приборов определенного вывода. Фирма заявляет, что ее дизайн защищен более чем 20 патентами.

«Нашей самой большой проблемой было управление температурным режимом. Решив эту проблему, мы оптимизировали оптическую конструкцию, чтобы максимально использовать возможности светодиода », — говорит директор по продажам бета-версии Кевин Орт.

National Semiconductor рекомендует управлять группами светодиодов с помощью базовой настройки, в которой светодиоды разделены на подстроки, каждая из которых получает питание от отдельного драйвера. Это поддерживает напряжение на светодиодах ниже того, которое считается опасным и требует специальной изоляции и мер безопасности. Кроме того, разомкнутая цепь одного светодиода не погасит весь световой поток.

Хотя уличные фонари с питанием от светодиодов дороже, чем обычные фонари, которые они заменяют, их содержание дешевле, говорит Орт.

Как сделать Драйверы
Светодиоды могут стать волной будущего, но, похоже, нет единого мнения о том, как лучше всего настроить их источник питания. «Пока нет установленной топологии для управления светодиодами», — заявляет National Semiconductor Corp . Старший инженер по приложениям Крис Ричардсон. «Если вы хотите управлять 100 светодиодами, чтобы получить максимальное количество света, есть много способов сделать это — фактически так много, что многие люди запуганы этой задачей.”

По словам Ричардсона, сегодня существует три общих подхода к управлению группами светодиодов. Первый и наиболее эффективный — просто подключить светодиоды последовательно от источника постоянного тока. Проблема с этим подходом заключается в том, что он может включать в себя достаточно высокие напряжения, чтобы их можно было классифицировать как опасные по UL. Используемые высоковольтные компоненты могут быть дорогими. «Это нормально, если вы действительно понимаете все правила техники безопасности и готовы выполнять двойную изоляцию и изоляцию. Но это ужасно с точки зрения тестирования безопасности, и я не рекомендую это делать », — говорит Ричардсон.

Во втором, немного другом подходе также используется одноступенчатый источник питания, но с гальванической развязкой, обычно в виде трансформатора. Это позволяет обойти некоторые проблемы безопасности и имеет преимущество доступности в виде готовых коммерческих устройств. По словам Ричардсона, проблема в том, что такой подход применим только для цепочек, состоящих максимум из восьми светодиодов. «Таким образом можно произвести не более 1 А», — объясняет он. «Это дорого, потому что вы платите надбавку за инжиниринг, который идет на поставку.”

Третий способ является наиболее распространенным. В нем используется коммерческий преобразователь переменного / постоянного тока, который выдает выходное напряжение ниже 60 В, что позволяет оставаться ниже опасного напряжения. Выходной сигнал поступает на несколько преобразователей постоянного / постоянного тока, каждый из которых управляет цепочкой светодиодов. Помимо предотвращения опасных уровней напряжения, этот подход гарантирует, что некоторые светодиоды будут гореть в случае отказа одного из них.

«Вам нужно больше времени на разработку схемы такого типа, но результат является наиболее гибким и надежным из трех возможных», — говорит Ричардсон.Устранение необходимости работать при высоком напряжении также может быть наименее сложным для большинства инженеров. «Я не встречал много инженеров по источникам питания, хорошо разбирающихся в высоковольтном переменном и низковольтном постоянном токе», — говорит Ричардсон.

Замыкание контакта

Beta LED , (800) 236-6800, betaled.com
CREE Inc ., (919) 313-5300, cree.com
Fairchild Semiconductor ,
(207) 775-8100 , fairchildsemi.com
National Semiconductor , (800) 272-9959, national.com

Часто задаваемые вопросы об энергосбережении — Lightbulbs Direct

Экономия энергии благоприятна для окружающей среды, а также для вашего банковского баланса и современной осветительной техники , это так же просто, как подключить новую лампочку! Никогда еще не было так просто выбрать энергосберегающую лампочку для замены существующей лампочки.


Компактный люминесцентный (КЛЛ) или светодиодный ?? Здесь мы отвечаем на некоторые из наиболее распространенных вопросов об обеих технологиях…

Мерцают ли они при включении?

CFL: В отличие от первых энергосберегающих ламп, появившихся несколько лет назад, последние разработки включают электронную схему быстрого запуска, которая позволяет лампе загораться менее чем за 1 секунду практически без мерцания.

Светодиод: Никогда. Принцип работы светодиодных ламп означает, что они всегда аккуратно включаются или выключаются. Если они мерцают, проблема с цепями внутри.


Разве они не дают довольно резкий свет?

CFL: Некоторые старые модели имели довольно высокую «цветовую температуру» (см. Глоссарий), которая может восприниматься как «более холодная», но многие энергосберегающие лампы теперь излучают «теплый белый» свет, что делает свет очень похожим на обычная лампа накаливания.

LED: Менее уважаемые производители будут «экономить» на своих светодиодных лампах, и часто это влияет на цвет излучаемого ими света. Светодиодные лампы хорошего качества излучают свет либо в свежем холодном белом цвете, либо в цвете дневного света, или, что гораздо чаще, в уютном теплом белом цвете — и они дают лучшее представление цвета, чем лампы накаливания CFL.


У них есть время на «разминку»?

CFL: Последние компактные люминесцентные лампы «прогреваются» намного быстрее, чем более старые конструкции, обычно до 95% своей полной светоотдачи менее чем за минуту.

Светодиод: Совсем нет. Светодиодные лампы мгновенно загораются на полную мощность.


Они всегда слишком длинные и торчат над моим абажуром!

CFL: Опять же, с новейшими разработками этого не должно происходить. Многие компактные люминесцентные лампы теперь настолько малы, что они практически такого же размера или даже меньше, чем обычные лампочки. Если лампочка видна, вы можете выбрать один из вариантов дизайна, в котором используется декоративная внешняя лампочка, закрывающая люминесцентные лампы.

LED: Светодиодная технология намного компактнее, чем КЛЛ, и лампочки почти всегда идентичны по форме и размеру.


Становятся ли энергосберегающие горячими?

CFL: Компактные люминесцентные лампы намного более энергоэффективны, чем обычные лампочки, поэтому они выделяют гораздо меньше тепла, что делает их более безопасными для использования в автоматических системах безопасности или при ночном освещении. Это также делает их идеальными для использования с абажурами из деликатных материалов, которые могут быть повреждены теплом.Однако все лампы выделяют некоторое количество тепла, и их не следует использовать в полностью закрытых осветительных приборах, если нет возможности для отвода тепла.

LED: Как и лампы CFL, светодиодные лампы работают при гораздо более низких температурах, чем традиционные лампы. Однако необходимо, чтобы микросхема внутри лампочки была как можно более прохладной. Поэтому корпуса светодиодных ламп часто состоят из радиаторов, которые могут быть горячими на ощупь после длительного использования.


Можно ли использовать энергосберегающие устройства и светодиоды с диммером?

Большинство компактных люминесцентных энергосберегающих устройств, доступных на рынке Великобритании, не могут регулироваться с помощью стандартного бытового регулятора яркости.В октябре 2007 года начали внедрять новейшие технологии энергосбережения с регулируемой яркостью, которые можно регулировать простым поворотом стандартного переключателя яркости. Перед использованием устройства энергосбережения с переключателем яркости убедитесь, что вы заказываете правильный товар.

Светодиодная технология работает совсем не так, как более традиционные лампы, хотя доступны светодиодные лампы с регулируемой яркостью, не все светодиодные лампы могут быть затемнены, а некоторые диммеры несовместимы со светодиодными лампами. Прочтите наше руководство по затемнению светодиодов здесь.


Лампочки Energy Saver и Long Life — это одно и то же?

Да и нет! Компактные люминесцентные лампы обычно имеют гораздо больший срок службы, чем обычные лампы накаливания, но есть также много других типов лампочек с «длительным сроком службы», большинство из которых также не экономят энергию.

Обычно номинальный срок службы обычной лампы накаливания составляет около 1000 часов, тогда как номинальный срок службы компактных люминесцентных энергосберегающих ламп составляет от 3000 до 15000 часов.Светодиодные лампы более эффективны и долговечны, чем лампы накаливания CFL. При среднем номинальном сроке службы обычно от 10 000 до 50 000 часов, они действительно обеспечивают долгий срок службы и экономят энергию.


Какие типы энергосберегающего освещения наиболее распространены?

Становится все труднее найти любой тип освещения, который не входит в число 3 наиболее распространенных типов энергоэффективного освещения, в основном потому, что традиционные лампы накаливания больше не производятся многими производителями.Оставшиеся варианты обеспечат более широкий спектр вариантов освещения, повышение энергоэффективности и сокращение отходов. Зная, какой свет выбрать для дома или офиса, вы убедитесь, что выберете правильный, который поможет вам работать или жить. Эти энергоэффективные типы освещения освещают ваш дом тем же количеством света за меньшие деньги.

Что случилось с традиционными лампами накаливания?

Правила, регулирующие освещение, были изменены, чтобы способствовать использованию обычных типов энергоэффективного освещения, поскольку стало более признанным, что традиционные лампы накаливания потребляют почти на 90% больше энергии и создают проблемы на свалках.Сначала люди сопротивлялись изменениям, утверждая, что освещение, обеспечиваемое новыми стилями, было неадекватным, но на самом деле свет от традиционных ламп накаливания был не лучшим. Новые энергосберегающие типы освещения представляют собой спектр освещения, который лучше всего подходит для зрения и здоровья в доме или офисе. Традиционные лампы накаливания больше не производятся, поскольку они потребляют много энергии для получения света.

Какие у меня сейчас варианты освещения?

Три наиболее распространенных типа энергоэффективного освещения — это галогенные лампы накаливания, компактные люминесцентные лампы (CFL) и светоизлучающие диоды (LED).Каждый из них бывает разной мощности, цвета светового спектра и размера. Какой из них вы выберете, будет зависеть от нескольких факторов.

Галогенные лампы накаливания

В то время как галогенные лампы накаливания чаще всего ассоциируются с офисами, они все чаще и чаще появляются в домах. Галогенные лампы накаливания имеют внутри капсулу, которая удерживает газ вокруг нити для повышения ее эффективности. Стоимость галогенного освещения значительно снизилась за последнее десятилетие, также существует более широкий выбор стилей лампочек и цветов.Галоген создает более сфокусированный «чистый» спектр света, который может помочь снять напряжение зрения.

Компактные люминесцентные лампы (КЛЛ) Лампы

CFL — это то, что сегодня вы обычно найдете на полках магазинов. Они имеют тот же размер и стиль, что и традиционные лампы накаливания, но сама лампочка почти похожа на мягкое мороженое. Это был гениальный способ использовать мощность и мощность традиционных длинно-ламповых люминесцентных ламп и адаптировать их к домашнему освещению, поддерживающему традиционные лампы накаливания.Эти лампы имеют широкий спектр света.

Одна вещь, которой они стали известны, заключается в том, что, хотя их стоимость значительно снизилась, они все еще дороже, чем традиционные лампы накаливания, но они также служат в 14 раз дольше. Заменить лампу старого образца на новую КЛЛ так же просто, как просто использовать КЛЛ вместо традиционной лампы.

По сравнению с лампой накаливания, КЛЛ Energy Star потребляют 1/5 или 1/3 электроэнергии и служат в восемь-пятнадцать раз дольше.КЛЛ стоит дороже, чем лампа накаливания, но может сэкономить вам в пять раз больше, чем его покупная цена, на затратах на электроэнергию в течение всего срока службы лампы. КЛЛ использует около одной трети энергии галогенной лампы накаливания.

Светодиоды (LED) Светодиоды

белого света обладают наибольшим потенциалом для будущего из всех распространенных типов освещения, поскольку они являются одной из самых энергоэффективных и быстро развивающихся технологий на сегодняшний день. Светодиоды загораются за счет движения электронов в полупроводнике.Это крошечные лампочки, которые легко включаются в электрическую цепь. Они выполняют множество задач и могут быть найдены во многих различных устройствах. Например, они передают информацию с пультов дистанционного управления, освещают светофоры, формируют числа на цифровых часах, зажигают часы и многое другое. Это один из наиболее энергоэффективных типов, срок службы которого более чем в 50 раз превышает срок службы КЛЛ.

Светодиоды

с рейтингом Energy Star потребляют 20-25% энергии и служат в 20-25 раз дольше, чем традиционные лампы накаливания.Светодиодные лампы и освещение изначально стоят дороже, но эту стоимость можно возместить на более позднем этапе, поскольку они потребляют меньше энергии и служат долгое время. Светодиодные лампы становятся все менее дорогими, поскольку обнаруживаются различные технологические инновации, в которых все больше отдельных светодиодов нужно дешево сгруппировать для обеспечения эффективного света.

Выбор типа освещения для дома или офиса

Переход на один из распространенных типов энергоэффективного освещения проще и доступнее, чем когда-либо.Лампы последнего поколения позволяют использовать лампы CFL взаимозаменяемо с традиционными лампами в большинстве случаев, и вы даже можете легко модернизировать люминесцентный световой короб старого образца с гнездами для ламповых CFL. В галогенах и светодиодах по-прежнему используются разные лампы, но их стоимость тоже значительно упала. Что вам действительно следует искать, так это качество света, которое вам нужно, чтобы знать, какую лампу выбрать. Существуют диаграммы, которые покажут вам, какой спектр света и мощность вам необходим для выполнения определенных действий, чтобы помочь вам сэкономить энергию и не напрягать глаза.

Хотя простое переключение лампочек на один из наиболее распространенных типов энергоэффективного освещения значительно снизит количество потребляемой энергии, это не единственное, что вам следует делать для экономии энергии. Практика правильных энергетических привычек имеет важное значение для экономии денег и энергии.

  • Выключайте свет, когда он не используется.
  • Используйте только то освещение, которое вам нужно.
  • Не допускайте попадания на лампы пыли и грязи.
  • Используйте энергоэффективные лампы.

Чем больше вы можете сделать, чтобы изменить способ потребления электроэнергии, тем лучше мы все будем в долгосрочной перспективе.

Изображение предоставлено
samsungtomorrow

схема% 20 диаграмма% 20% 20 энергия% 20 экономия% 20 паспорт лампы и примечания по применению

KIA78 * pI

Реферат: транзистор КИА78 * п ТРАНЗИСТОР 2Н3904 хб * 9Д5Н20П хб9д0н90н КИД65004АФ транзистор mosfet хб * 2Д0Н60П KIA7812API
Текст: нет текста в файле


Оригинал
PDF 2N2904E BC859 KDS135S 2N2906E BC860 KAC3301QN KDS160 2N3904 BCV71 KDB2151E KIA78 * pI транзистор KIA78 * р ТРАНЗИСТОР 2Н3904 хб * 9Д5Н20П khb9d0n90n KID65004AF Транзистор MOSFET хб * 2Д0Н60П KIA7812API
хб * 9Д5Н20П

Аннотация: Стабилитрон khb9d0n90n 6v транзистор khb * 2D0N60P KHB7D0N65F BC557 транзистор kia * 278R33PI KHB9D0N90N схема транзистора ktd998
Текст: нет текста в файле


Оригинал
PDF 2N2904E BC859 KDS135S 2N2906E BC860 KAC3301QN KDS160 2N3904 BCV71 KDB2151E хб * 9Д5Н20П khb9d0n90n Стабилитрон 6в хб * 2Д0Н60П транзистор KHB7D0N65F BC557 транзистор kia * 278R33PI Схема КХБ9Д0Н90Н ktd998 транзистор
2225Л-11-52

Реферат: 14005-1P1 PI96B30P00F00Z1 MD-25-M-3000X 143-022-03 395-044-558-201 621-025-260-043 627-037-220-047 213-020-602 PLCC-032-T-N
Текст: нет текста в файле


Оригинал
PDF 10-ТТ PLCC-028-T-N SMP-28LCC-N SMP-32LCC-N PLCC-32-SMT-TT PLCC-032-T-N SMP-44LCC-N PLCC-44-SMT-TT PLCC-044-T-N PLCC-052-T-N 2225Л-11-52 14005-1П1 PI96B30P00F00Z1 MD-25-M-3000X 143-022-03 395-044-558-201 621-025-260-043 627-037-220-047 213-020-602 PLCC-032-T-N
ICME68H-R0-D1120NHA

Аннотация: ICM-C68S-TS13-6N95D ICM-C68S-TS13-5034A ICM-C68S-TS13-6084B
Текст: нет текста в файле


Оригинал
PDF 68-контурный 635 мм ICM-C68H-S112-400R1 ICME-C68L-300HA / C68R-300HA.20NHA / L0-D1120NHA / R0-D1121NHA / L0-D1121NHA 20RHA / L0-D1120RHA / R0-D1121RHA / L0-D1121RHA ICME68H-R0-D1120NHA ICM-C68S-TS13-6N95D ICM-C68S-TS13-5034A ICM-C68S-TS13-6084B
2005-85 129-005

Абстракция: 6086B 988002
Текст: нет текста в файле


Оригинал
PDF 68-контурный 635 мм ( ICM-C68H-S112-400N1 / 400R1 -C68L-300H / C68R-300H. ICM-C68H-S112-403N1 ICME-C68L-303H / C68R-303H. -D1120RH / L0-D1120RH / R0-D1121RH / L0-D1121RH 85 129-005 6086B 988002
трансформатор переменного тока 220 постоянного тока 12

Аннотация: Трансформатор класса 130 (B) с центральным ответвлением Трансформатор с центральным ответвлением Трансформатор с центральным ответвлением 4812b 220110 трансформатор трансформатор с центральным ответвлением Stancor p-6378 силовой трансформатор Выходной трансформатор Stancor
Текст: нет текста в файле


Оригинал
PDF Д-350 П-8634 GSD-500 ГИС-500 ГИСД-500 ГСД-750 ГИС-1000 GSD-1000 ГИСД-1000 ГСД-1500 трансформатор AC 220 dc 12 Трансформатор класса 130 (B) трансформатор с центральным ответвлением трансформатор с центральным ответвлением 4812b 220 110 трансформатор центральный ответвитель трансформатора Stancor p-6378 силовой трансформатор Выходной трансформатор Stancor
Продолжить PCD3

Аннотация: Эквивалент A / ICE2QS03 ​​a / TDA7292 эквивалент TI040 TI041 a / 5r199p эквивалент эквивалент a / k5a50d эквивалент U16594EJ1V0UM IE-V850ES-G1
Текст: нет текста в файле


Оригинал
PDF 144 ГДж ЭА-144-20-0 GMA144-20-0 U16594EJ1V0UM Продолжить PCD3 Эквивалент A / ICE2QS03 эквивалент a / TDA7292 TI040 TI041 эквивалент a / 5r199p эквивалент эквивалент a / k5a50d U16594EJ1V0UM IE-V850ES-G1
2010 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 68-контурный 635 мм ICM-C68H-S112-400N1 / 400R1 -C68L-300HA / C68R-300HA.ICM-C68H-S112-403N1 ICME-C68L-303HA / C68R-303HA. 20NHA / L0-D1120NHA / R0-D1121NHA / L0-D1121NHA 20RHA / L0-D1120RHA / R0-D1121RHA / L0-D1121RHA
2009 — ICM-C68H-SS1A-4109t

Аннотация: ICM-C68S-TS13-5033A ICME-C68R-303HA D1120 E60389 LR20812 ICM-C68S-TS
Текст: нет текста в файле


Оригинал
PDF 68-контурный 635 мм ICM-C68H-S112-400N1 / 400R1 -C68L-300HA / C68R-300HA. ICM-C68H-S112-403N1 ICME-C68L-303HA / C68R-303HA.20NHA / L0-D1120NHA / R0-D1121NHA / L0-D1121NHA 20RHA / L0-D1120RHA / R0-D1121RHA / L0-D1121RHA ICM-C68H-SS1A-4109t ICM-C68S-TS13-5033A ICME-C68R-303HA D1120 E60389 LR20812 ICM-C68S-TS
4812b

Аннотация: sta6013 P-8364 Stancor ppc-22 DSW-612 4190A P-8384 P-8362 GSD-100 stancor transformer
Текст: нет текста в файле


Оригинал
PDF ЗВЕЗДА-9005 ЗВЕЗДА-9006 ЗВЕЗДА-9007 П-6133 П-6454 STA-4125T П-8638 ТГК130-230 П-8622 ТГК175-230 4812b sta6013 П-8364 Станкор ппк-22 DSW-612 4190A П-8384 П-8362 GSD-100 трансформатор stancor
Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


OCR сканирование
PDF 14Б1-А
варистор демпферный симистор

Аннотация: 3-фазный тиристорный привод постоянного тока фототиристор PHOTOCOUPLER фототриак демпфер тиристорный симистор демпфирующий триак схема фототиристора демпфера
Текст: нет текста в файле


Оригинал
PDF
LC1D09JL

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF LC1D09JL LC1D09JL
LC1D09MD

Аннотация: LC1-D09 контактор philips 140Aac
Текст: нет текста в файле


Оригинал
PDF LC1D09MD LC1D09MD LC1-D09 контактор philips 140 А перем.
2003 — QOB360

Аннотация: Автоматические выключатели квадратного сечения d qo центр нагрузки HQO206 schneider SHUNT TRIP QO2175SB CIRCUIT независимый расцепитель q1100an воздушный автоматический выключатель
Текст: нет текста в файле


Оригинал
PDF QOB360 QOB360 Предохранители квадрат d qo центр нагрузки HQO206 schneider SHUNT TRIP QO2175SB СХЕМА независимый расцепитель q1100an воздушный выключатель
LC1DT20U7

Аннотация: IEC 60947-4-1 LC1-DT20 schneider lc1d
Текст: нет текста в файле


Оригинал
PDF LC1DT20U7 LC1DT20U7 МЭК 60947-4-1 LC1-DT20 schneider lc1d
LC1-DT40

Аннотация: LC1Dt40
Текст: нет текста в файле


Оригинал
PDF LC1DT40C7 LC1-DT40 LC1Dt40
LC1-D09

Аннотация: lc1d098 LC1D098ED
Текст: нет текста в файле


Оригинал
PDF LC1D098ED LC1-D09 lc1d098 LC1D098ED
lc1d128

Аннотация: LC1D128M7 контактор LC1-D LC1-D128 контактор Philips 100A1 LC1-D12
Текст: нет текста в файле


Оригинал
PDF LC1D128M7 lc1d128 LC1D128M7 Контактор LC1-D lc1-d128 контактор philips 100A1 LC1-D12
2002 — C9052-02

Аннотация: Hamamatsu Corporation ac dc частотомер Схема фотодиодов S5821 S2386 C9052-04 C9052-03 C9052 A9053-01
Текст: нет текста в файле


Оригинал
PDF C9052 C9052-04 A9053) C9052-01 / -02 / -03 A9053-01) C9052-01 C9052-02 C9052-03 SE-171 KACC1083E03 C9052-02 Hamamatsu Corporation ac dc Цепь частотомера фотодиоды S5821 S2386 C9052-03 A9053-01
2003 — QO2175SB

Аннотация: автоматический выключатель qo-mbgx HQO306 q1100an квадратный D qo 20-амперный выключатель «Автоматические выключатели» Автоматические выключатели QOB120VH квадратный d G1 центр нагрузки
Текст: нет текста в файле


Оригинал
PDF QOB120VH 120 / 240В QO2175SB qo-mbgx автоматический выключатель HQO306 q1100an Выключатель Square D qo 20 ампер «Предохранители» Предохранители QOB120VH квадрат d G1 центр нагрузки
14B1-A

Аннотация: J21A J41C J11-A j71A
Текст: нет текста в файле


Оригинал
PDF
2013 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF IDCB75 — SA-ENG SA-IDCB62
2003 — QO230

Аннотация: q1100an qo-mbgx square d qo МИНИАТЮРНЫЙ ВЫКЛЮЧАТЕЛЬ 0730DB0301 HQO306 «Автоматические выключатели», квадрат d G1 центр нагрузки, квадрат d кривые автоматического выключателя
Текст: нет текста в файле


Оригинал
PDF QO230 120 / 240В QO230 q1100an qo-mbgx квадрат d qo МИНИАТЮРНЫЙ ВЫКЛЮЧАТЕЛЬ 0730DB0301 HQO306 «Предохранители» квадрат d G1 центр нагрузки кривые автоматического выключателя с квадратом d
2003 — центр нагрузки квадратный d qo

Аннотация: «Автоматические выключатели» Автоматические выключатели QO240 HQO206 HQO306 Электрические выключатели Schneider QO2175SB квадратные d qo Главный автоматический выключатель щитка
Текст: нет текста в файле


Оригинал
PDF QO240 120 / 240В квадрат d qo центр нагрузки «Предохранители» Предохранители QO240 HQO206 HQO306 Электрические выключатели Schneider QO2175SB квадрат d qo щитовой главный автоматический выключатель

Китайский производитель балласта, электронный балласт, поставщик жгутов проводов

Добро пожаловать в Zhejiang Waho Holding Group, мы рады, что вы зашли в гости!
Zhejiang Waho Holding Group управляет девятью дочерними компаниями.Здесь мы в основном представляем вам нашу основную отрасль производства.

—— Zhejiang Leipeide Technology — Производитель балласта

Цифровой балласт нашего бренда «Waho» известен в Китае, и мы уже применяем этот товарный знак в более чем 20 странах по всему миру …

Добро пожаловать в Zhejiang Waho Holding Group, мы рады, что вы зашли в гости!
Zhejiang Waho Holding Group управляет девятью дочерними компаниями. Здесь мы в основном представляем вам нашу основную отрасль производства.

—— Zhejiang Leipeide Technology — Производитель балласта

Цифровой балласт нашего бренда «Waho» известен в Китае, и мы уже применяем этот товарный знак в более чем 20 странах по всему миру. Наша цель — создать лучший цифровой балласт в Китае.
По сравнению с конкурентами мы имеем следующие преимущества:
1. У нас есть способная команда разработчиков, в которую входят 15 инженеров-электриков, инженеров-механиков и инженеров по сертификации. Мы занимаемся от самостоятельной разработки программы до производства и отгрузки.
2. Институт электротехники Чжэцзянского университета, который является классическим научно-исследовательским институтом в области электрического освещения в Китае, поддерживает нас в разработке технологий. Он также известен за рубежом и когда-либо сотрудничал с GE Lighting, Philips Lighting, Universal Lighting и т.д. У нас есть собственный стандарт испытаний и процесс контроля качества. Он строго тестирует и анализирует результаты.
Для изготовления высококачественных балластов мы полностью продумали подходящую лампу и сделали все функции защиты, особенно для запуска и разомкнутого контура, короткого контура, а также от превышения температуры и ограничения выходной мощности.
4. Наша группа Waho Holding производит электротехническую продукцию более 20 лет назад, мы имеем опыт массового производства, управления и контроля качества.

Zhejiang Waho Electric Co., Ltd
Zhongshan Waho Electric Appliance Co., Ltd
Hangzhou Waho Electronic Equipment Sci-tech Co., Ltd

Эти 3 дочерние компании являются производителями жгутов проводов. Мы производим жгуты проводов с 16 лет назад. На этих 3 заводах мы производим кабельные жгуты, FFC, разъемы, клеммы и т. Д. По индивидуальному заказу.Мы поставляем продукцию многим ведущим компаниям, производящим бытовую технику, как в стране, так и за рубежом. Такие как: Panosonic, LG, Media, Hisence, HITACHI, CHANGHONG, Shinco, KACHER. Мы имеем большой опыт работы с крупными покупателями и обработки больших объемов массового производства, а также контроля качества.

Другая дочерняя компания в других сферах деятельности, перечисленных ниже, только для клиентов, которые знают нас больше:

Yunnan Waho Investment Co., Ltd
Yueqing Yuehong Clothing Co., Ltd
Hangzhou Qingcheng Real Estate Co., Ltd
Xi’an Ruihe Investment Co., Ltd
Lin′an Xianhe Property Management Co., Ltd

Схема для энергосберегающих ламп, DIL16 IR21571PBF

Схема для энергосберегающих ламп, DIL16 IR21571PBF | GM электронный COM

Для правильной работы и отображения веб-страницы, пожалуйста, включите JavaScript в вашем браузере

Схема управления люминесцентными лампами.DIL16

Торговая марка INFINEON Код товара 399-175 Код Выробце IR21571PBF Вес 0.00200 кг

Твоя цена € 3,98

Склад Есть в наличии (28 комплектов)

Пражский филиал Есть в наличии (11 ks)

Брненский филиал Распродано

Остравский филиал в наличии 4 шт.

Пльзенский филиал Распродано

Филиал в Градец-Кралове Распродано

Братиславский филиал Последний кусок

Код товара 399-175
Вес 0.00200 кг
Поуздро: DIP16 —
Pracovní teplota max: ° C
Монтаж электрики:
Pracovní teplota min: -55 ° С
Тип обвода: Obvod pro úsporné žárovky —

Схема управления люминесцентными лампами.DIL16

Код товара 399-175
Вес 0,00200 кг
Поуздро: DIP16 —
Pracovní teplota max: ° C
Монтаж электрики:
Pracovní teplota min: -55 ° С
Тип обвода: Obvod pro úsporné žárovky —

Подобные товары

0,62 € Цена нетто 0,75 €

Код 966-001

В наличии

Электронный переключатель для импульсного модулятора

0,75 € Цена нетто € 0,91

Код 332-010

0,65 € Цена нетто 0,79 €

Код 936-001

0,78 € Цена нетто € 0,95

Код 001-131

В наличии

Конденсаторно-импульсные преобразователи напряжения с регулятором…

1,95 € Цена нетто € 2,36

Код 974-002

2,99 € Цена нетто € 3,62

Код 393-025

В наличии

Схема питания для источников ШИМ, 15..25 Вт TO220-7.

3,09 € Цена нетто € 3,74

Код 332-907

Nejprodávanější výrobci

Введите имя пользователя и пароль или зарегистрируйтесь для новой учетной записи.

Методы и стратегии энергосбережения для освещения в промышленности

% PDF-1.7 % 1 0 объект > >> эндобдж 6 0 obj > эндобдж 2 0 obj > транслировать application / pdf10.1016 / j.proeng.2015.01.357

  • Методы и стратегии энергосбережения для освещения в промышленности
  • Рузена Краликова
  • Андрейова Мириам
  • Эмиль Вессели
  • Энергосбережение
  • освещение
  • освещение
  • электричество
  • Разработка процедур, 100 (2015) 187-195.DOI: 10.1016 / j.proeng.2015.01.357
  • Elsevier B.V.
  • journalProcedia Engineering © 2015 Авторское шоу Опубликовано Elsevier BV Все права защищены. 1877-705810020152015187-19518719510.1016 / j.proeng.2015.01.357 http://dx.doi.org/10.1016/j.proeng.2015.01.3572010-04-23true10 .1016 / j.proeng.2015.01.357
  • elsevier.com
  • sciencedirect.com
  • 6.410.1016 / j.proeng.2015.01.357noindex2010-04-23truesciencedirect.comↂ005B1ↂ005D> elsevier.comↂ005B2ↂ005D>
  • sciencedirect.com
  • elsevier.com
  • Elsevier2015-02-17T12: 54: 28 + 05: 302015-02-17T12: 42: 33 + 05: 302015-02-17T12: 54: 28 + 05: 30TrueAcrobat Distiller 10.0.0 (Windows) uuid: 28644b5b-649d- 4952-81a2-c45775dc8087uuid: 7b396597-76d3-47f9-b8c1-ddba55d2b010 конечный поток эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 5 0 obj > эндобдж 7 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text / ImageB] / Свойства> / XObject> >> / Повернуть 0 / TrimBox [0 0 544.252 742,677] / Тип / Страница >> эндобдж 8 0 объект > эндобдж 9 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 10 0 obj > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 11 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 12 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742,677] / Тип / Страница >> эндобдж 13 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 14 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text / ImageC / ImageI] / XObject> >> / Повернуть 0 / TrimBox [0 0 544.252 742.677] / Тип / Страница >> эндобдж 15 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text] >> / Повернуть 0 / TrimBox [0 0 544.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *