Посчитать мощность: Калькулятор перевода силы тока в мощность (амперы в киловатты)

Калькулятор перевода силы тока в мощность (амперы в киловатты)

Мощность — энергия, потребляемая нагрузкой от источника в единицу времени (скорость потребления, измеряется в Ватт). Сила тока — количество энергии, прошедшей за величину времени (скорость прохождения, измеряется в амперах).

Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения.

Чтобы перевести Ватты в Амперы, понадобится формула: I = P / U, где I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтах.

Если сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз. Корень из трех приблизительно равен 1,73. Чтобы перевести ток в мощность (узнать, сколько в 1 ампере ватт), надо применить формулу:

P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.

Таблица перевода Ампер – Ватт:

220 В

380 В

 

100 Ватт

0,45

0,15

Ампер

200 Ватт

0,91

0,3

Ампер

300 Ватт

1,36

0,46

Ампер

400 Ватт

1,82

0,6

Ампер

500 Ватт

2,27

0,76

Ампер

600 Ватт

2,73

0,91

Ампер

700 Ватт

3,18

1,06

Ампер

800 Ватт

3,64

1,22

Ампер

900 Ватт

4,09

1,37

Ампер

1000 Ватт

4,55

1,52

Ампер

Допустим, что вы живете в квартире со старым электросчетчиком, и у вас установлена автоматическая пробка на 16 Ампер. Чтобы определить, какую мощность «потянет» пробка, нужно перевести Амперы в киловатты. Для удобства расчетов принимаем cosФ за единицу. Напряжение нам известно – 220 В, ток тоже, давайте переведем: 220*16*1=3520 Ватт или 3,5 киловатта – ровно столько вы можете подключить единовременно.

Сложнее дело обстоит с электродвигателями, у них есть такой показатель как коэффициент мощности. Если полная мощность двигателя 5,5 киловатт, то потребляемая активная мощность 5,5*0,87= 4,7 киловатта.  Стоит отметить, что при выборе автомата и кабеля для электродвигателя нужно учитывать полную мощность, поэтому нужно брать ток нагрузки, который указан в паспорте к двигателю. И также важно учитывать пусковые токи, так как они значительно превышают рабочий ток двигателя.

Формула мощности электрического тока. Как найти, вычислить, рассчитать мощность.

 

 

 

Тема: по какой формуле можно найти электрическую мощность, как ее узнать.

 

Электрическая мощность является одной из наиболее важных и значимых характеристик, которая показывает величину, силу той электротехники, систем, цепей, что работают, выполняя ту или иную функцию. Естественно, как и любая другая физическая величина электрическая мощность должна иметь свою меру, благодаря которой появляется возможность ее рассчитывать, делая заведомо точные, экономичные, эффективные устройства, системы и т.д. Для расчетов существуют определенные формулы, по которым и находятся нужные значения мощности.

 

 

Формула мощности тока (электрического) достаточно проста и выражается как произведение напряжения на силу тока. То есть, чтобы найти электрическую мощность достаточно просто напряжение умножить на ток. Если воспользоваться законом ома, то ее можно найти и через сопротивление. В этом случае электрическая мощность будет равна силе тока в квадрате умноженный на сопротивление или же напряжение в квадрате деленное на сопротивление.

 

Напомню, что при использовании формул подразумевается применение основных единиц измерения физических величин. В нашем случае основными единицами будут:

 

Электрическая мощность — Ватт;
Сила тока — Ампер;
Напряжение — Вольт;
Сопротивление — Ом.

 

 

 

 

Исходя из этого формула мощности электрического тока будет звучать так — 1 Ватт равен 1 Вольт умноженный на 1 Ампер. Думаю вы смысл поняли. Меньшими единицами измерения мощности является милливатты (1000 мВт = 1 Вт), большими единицами являются киловатты и мегаватты (1 кВт = 1000 Вт, 1 МВт = 1000 000 Вт). Милливатты это достаточно маленькая мощность, ее используют в электронике, радиотехнике. К примеру мощность слухового аппарата измеряется именно в милливаттах. Мощность в ваттах можно встретить в звуковых усилителях, у небольших блоках питания, мини электродвигателях. Киловатты это мощность, которая часто встречается в бытовых и технических устройствах (электрочайники, электродвигатели, обогреватели и т.д.). Мегаватты это уже достаточно большая мощность, ее можно встретить на электроподстанциях, электростанциях, у потребителях электроэнергии размером с город и т.д.

 

Если говорить о формуле более научной, которая электрическую мощность тока выражает через работу и время, то она будет звучать так — электрическая мощность равна отношению работы тока на участке цепи ко времени, в течении которого совершается эта работа.

 

 

То есть, работа деленная на время будет определять мощность. Кроме этого часто путают такие величины как ватты и ватт-час. В ваттах измеряется электрическая мощность — скорость изменения энергии (передачи, преобразования, потребления). А ватт-час являются единицей измерения самой энергии (работы). В ватт-часах выражается энергия, произведенная (переданная, преобразованная, потребленной) за определенное время.

 

Мощность также разделяется на активную и реактивную. Активная мощность — часть полной мощности, что удалось передать в нагрузку за период переменного тока. Она равна произведению действующих значений напряжения и тока на cosφ (косинус угла сдвига фаз между ними).

Электрическая мощность, что не была передана в нагрузку, а привела к некоторым потерям (на излучение, нагрев) называется реактивной мощностью. Она равна произведению действующих значений напряжения и тока на sinφ (синус угла сдвига фаз между ними).

 

P.S. Электрическая мощность является одной из главных величин и характеристик, используемые в электротехнике. Именно ее мы узнаем при покупки того или иного электрического устройства. Ведь она определяет силу, с которой электротехника может работать. К примеру электродрель. Если мы купим дрель недостаточной мощности, то она просто не сможет обеспечить нам нормальную работу при сверлении. Хотя гнаться за слишком большой мощностью также не следует, ведь это ведет к излишней трате электроэнергии, за которую вы будете платить. Так что у всего должна быть своя мера и мощность.

 

 

Расчет примерной мощности электроприборов

Содержание

Простой способ расчёта мощности электроприборов

Мощность каждого электроприбора указана в техпаспорте и дублируется на прикрепленной к нему бирке или табличке. Самый простой способ расчёта — просуммировать мощности всех подключаемых к стабилизатору или ИБП потребителей.

Поправка: сейчас мы рассмотрели оборудование без электродвигателей. Оно обладает только активной составляющей мощности. К этой категории относятся электроплиты, кипятильники, лампы накаливания и др.

Холодильники, стиральные машины, дрели и прочее оборудование с электродвигателями обладает также реактивной составляющей мощности.

Для таких электроприборов необходимо вычислить полную мощность (измеряется в Вольт-Амперах (ВА)), которая, в отличие от описанного выше, не будет равна активной мощности. Соотношение между полной и активной мощностью выражается формулой:

  • Pполная = P
    активная
     / cos (ф).

Сos(φ) указывается в документации и на бирке электроприбора (встречается обозначение PF – Power Factor). При отсутствии данных допустимо принять cos(φ) в пределах 0,7-0,8.

Например, если P активная мощность электродрели составляет 700 Вт, то P полная рассчитывается как 700 / 0,7 = 1000 ВА.

Вывод: для точного расчета суммарной мощности нагрузки нужно сложить полную мощность всех выбранных приборов (в Вольт-Амперах). Для электроприборов без двигателей полная мощность будет равна активной.

Рекомендуется подбирать стабилизатор с мощностью, превышающей полученное суммированием значение на 20-30%, что обеспечит следующие преимущества:

  • избавит оборудование от перегрузки;
  • позволит подключать дополнительных потребителей.

Пусковые токи электроприборов с реактивной нагрузкой

Не следует забывать, что при запуске оборудования, содержащего электродвигатель (насос, компрессор), его «пусковой ток» в 3-5 раз превышает номинальное значение. Соответственно, в этот момент происходит пропорциональный пусковому току «скачок» нагрузки в 3-5 раз.

При выборе стабилизатора или ИБП следует обязательно учитывать пусковые токи защищаемого оборудования и подбирать аппарат по максимальному, пусковому значению мощности.

Например, если для электродрели с активной мощностью в 700 Вт купить стабилизатор на 1 кВт, то в момент запуска он будет отключаться по причине перегруза. В данном случае необходимо изделие минимум с трехкратным превышением по мощности:

  • 700 Вт × 3 = 2,1 кВт.

Узнать больше про ИБП с двойным преобразованием.

Калькулятор расчета мощности освещения — Портал ЖКХ Архангельской области

Уважаемые пользователи!

С 1 января 2018 года сведения по управлению многоквартирными домами на портале ЖКХ Архангельской области могут быть неактуальными. Полную информацию о своей управляющей организации Вы можете найти по адресу: dom. gosuslugi.ru В соответствии с действующим законодательством ГИС ЖКХ стала единственным обязательным информационным ресурсом о деятельности в сфере управления многоквартирными домами.

url:gkh.dvinaland.ru/knowledge/calcs/calc2.php

При расчете мощности освещения помещения нужно учесть, что оно может быть основным или местным. Когда нужно рассчитать освещенность, вне зависимости от того, делаете ли вы расчет местного или основного освещения, нужно учитывать, что различные светильники и лампы дают разные световые потоки, яркость и интенсивность.

Для более точного расчета освещенности какого-либо освещения, учитывайте, что величина удельной мощности светильника должна браться в зависимости от типа помещения. Существуют специальные таблицы с расчетами показателей удельной мощности на освещение, учитывающий тип помещения и вид ламп:

Тип Помещения Лампа накаливания Галогеновая лампа Лампа дневного света
Детская комната 30-90 70-80 18-22
Гостиная 10-35 25-30 7-9
Спальня 10-20 14-17 4-5
Коридор 10-15 11-13 3-4
Кухня 12-40 30-35 8-10
Ванная комната 10-30 23-27 6-8
Кладовая, гараж 10-15 11-13 3-4

Предлагаем Вам воспользоваться интерактивным калькулятором и рассчитать мощность освещения методом удельной мощности. Удельная мощность (Pуд) – это отношение общей мощности всех ламп помещения (необходимой для достижения заданной освещённости) к его площади. Измеряется удельная мощность в Вт/(м²) . Для большей наглядности представим эту величину в виде следующего выражения: Pуд = n * Pл / S
Где n – общее количество установленных в помещении ламп (шт. )
Pл – мощность одной лампы (Вт)
S – площадь освещаемого помещения (м²)
Если вывести из этой формулы мощность одной лампы, то получим следующее выражение: Pл = Pуд * S / n

Мощность электрического тока — Основы электроники

Обычно электрический ток сравнивают с течением жид­кости по трубке, а напряжение или разность потенциалов — с разностью уровней жидкости.

В этом случае поток воды, падающий сверху вниз, несет с собой определенное количество энергии. В усло­виях свободного падения эта энергия растрачивается беспо­лезно для человека. Если же направить падающий поток во­ды на лопасти турбины, то последняя начнет вращаться и сможет производить полезную работу.

Работа, производимая потоком воды в течение определен­ного промежутка времени, например, в течение одной секун­ды, будет тем больше, чем с большей высоты падает поток и чем больше масса падающей воды.

Точно так же и электрический ток, протекая по цепи от высшего потенциала к низшему, совершает работу. В каждую данную секунду времени будет совершаться тем больше рабо­ты, чем больше разность потенциалов и чем большее количе­ство электричества ежесекундно проходит через поперечное сечение цепи.

Мощность электрического тока это количество работы, совершаемой за одну секунду времени, или скорость совершения работы.

Количество электричества, проходящего через поперечное сечение цепи в течение одной секунды, есть не что иное, как сила тока в цепи. Следовательно, мощность электрического тока будет прямо пропорциональна разности потенциалов (на­пряжению) и силе тока в цепи.

Для измерения мощности электрического тока принята еди­ница, называемая ватт (Вт).

Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В.

Для вычисления мощности постоянного тока в ваттах нуж­но силу тока в амперах умножить на напряжение в вольтах.

Если обозначить мощность электрического тока буквой P, то приведенное выше правило можно записать в виде формулы

P = I*U. (1)

Воспользуемся этой формулой для решения числового при­мера. Требуется определить, какая мощность электрического тока необходима для накала нити радиолампы, если напряжение накала равно 4 в, а ток накала 75 мА

Определим мощность электрического тока, поглощаемую нитью лампы:

Р= 0,075 А*4 В = 0,3 Вт.

Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно.

В этом случае мы воспользуемся знакомым нам соотноше­нием из закона Ома:

U=IR

и подставим правую часть этого равенства (IR) в формулу (1) вместо напряжения U.

Тогда формула (1) примет вид:

P = I*U =I*IR

или

Р = I2*R. (2)

Например, требуется узнать, какая мощность теряется в реостате сопротивлением в 5 Ом, если через него проходит ток, силой 0,5 А. Пользуясь формулой (2), найдем:

P= I2*R = (0,5)2*5 =0,25*5 = 1,25 Вт.

Наконец, мощность электрического тока может быть вычислена и в том слу­чае, когда известны напряжение и сопротивление, а сила тока неизвестна. Для этого вместо силы тока I в формулу (1) подставляется известное из закона Ома отношение U/R и тогда формула (1) приобретает следующий вид:

Р = I*U=U2/R (3)

Например, при 2,5 В падения напряжения на реостате сопро­тивлением в 5 Ом поглощаемая реостатом мощность будет равна:

Р = U2/R=(2,5)2/5=1,25 Вт

Таким образом, для вычисления мощности требуется знать любые две из величин, входящих в формулу закона Ома.

Мощность электрического тока равна работе электрического тока, производимой в течение одной секунды.

P = A/t

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Как рассчитать мощность котла отопления для частного дома

Важно рассчитать оптимальную мощность отопительного котла для частного дома, чтобы обеспечить себе комфортную температуру. Для установки производительности оборудования изначально определяются теплопотери здания. На их количество оказывают влияния многочисленные факторы, в числе которых стройматериалы, используемые при строительстве дома, и наличие теплого пола.

 

Как рассчитать мощность котла по площади

 

В нашей климатической зоне для обогрева 10 м2 необходим 1 кВт мощности. К примеру, если площадь вашего дома составляет 190 м2, то для его обогрева необходим агрегат с мощностью 19 кВт.

Данные расчеты приблизительные, так как не принимают во внимание высоту потолков и иные факторы. Соответствующие корректировки вносятся после выведения конкретных коэффициентов. Учитывайте, что норма в 1 кВт для 10 м2 подходит для помещений, где высота потолков достигает 2,7 метров. Если потолки у вас дома выше, то высота делится на стандартное число 2,7, что позволяет рассчитать поправочный коэффициент.

Если вы собираетесь использовать котел не только для отопления, но и для нагрева воды, к полученной сумме вам нужно добавить еще 20%.

 

Вне зависимости от того, какое топливо для котла вы используете (дрова, дизель или газ), учитывается еще ряд теплопотерь:

  • При проветривании – 15%.
  • При низком утеплении стен – 35%.
  • При наличии неутепленного пола – 15%.

 

По этой причине важно какой-то из перечисленных факторов учитывать в процессе проведения расчетов.

 

Как рассчитать мощность котла отопления с помощью найпростейшей формулы

 

Рекомендовано использовать самую простейшую формулу: W = S*Wуд.

S – площадь помещений, рассчитывается в м2.

W – мощность отопительного оборудования, рассчитывается в кВт.

Wуд –удельная мощность, которая относится к среднестатистической и используется для конкретной климатической зоны (кВт/кв.м.). Данное значение основано на работе систем отопления в климатических зонах в течение длительного периода времени. При умножении площади на данный показатель мы получаем усредненную мощность.  

 

Зачем рассчитывать, если можно сразу купить самый мощный

 

При совершении покупки без предварительных расчетов можно потратить слишком много денег. Кроме этого, излишняя мощность, которая превышает ваши потребности, приведет к увеличению нагрузки на гидравлическую систему, к несбалансированности функционирования, сбоям в автоматике и поломкам.

С такой проблемой справляются частично, если котел оснащен многоступенчатой модуляционной грелкой. В этом случае можно регулировать силу горения. Но в этом случае вы получаете только частичное решение вопроса. Если слишком велика разница между получаемой и необходимой мощностью, то модуляционная грелка не будет срабатывать, поэтому котел станет работать импульсивно.

Стоит отметить, что у мощного котла горелка после нагрева теплоносителя сразу отключается, топливо не может полностью прогореть, а дымоход прогреться. По итогу сажа в значительных количествах оседает в дымоходе, что приводит к сбоям в функционировании системы отопления.

Тип котла и его мощность

 

На расчет мощности не влияют тип котла и используемое топливо. По этой причине некорректно рассчитывать, к примеру, мощность газового агрегата.

Не имеет значения, как вы отапливаете дом, с помощью традиционной кирпичной печи; электрического, твердотопливного, жидкотопливного или газового котла, КПД устройства зависит  и от помещения, в котором он установлен. По этой причине не стоит конкретизировать и, к примеру, рассчитывать мощность газового или твердотопливного котла.

Самое главное, что рассчитывать мощность отопительного оборудования стоит еще в процессе проектирования здания. Это обусловлено необходимостью  правильно устроить топочное помещение.

Как рассчитать мощность, силу тока и напряжение: принципы и примеры расчета для бытовых условий

Расчет электрического тока по мощности: формулы, онлайн расчет, выбор автомата

Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока.

Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.

Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети.

Обратите внимание

Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя.

Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление.

В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше.

Важно

Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое.

Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки.

Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину.

А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия.

Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) — 60 А;
  • электроплита (10 кВт) — 50 А;
  • варочная панель (8 кВт) — 40 А;
  • электроводонагреватель проточный (6 кВт) — 30 А;
  • посудомоечная машина (2,5 кВт) — 12,5 А;
  • стиральная машина (2,5 кВт) — 12,5 А;
  • джакузи (2,5 кВт) — 12,5 А;
  • кондиционер (2,4 кВт) — 12 А;
  • СВЧ-печь (2,2 кВт) — 11 А;
  • электроводонагреватель накопительный (2 кВт) — 10 А;
  • электрочайник (1,8 кВт) — 9 А;
  • утюг (1,6 кВт) — 8 А;
  • солярий (1,5 кВт) — 7,5 А;
  • пылесос (1,4 кВт) — 7 А;
  • мясорубка (1,1 кВт) — 5,5 А;
  • тостер (1 кВт) — 5 А;
  • кофеварка (1 кВт) — 5 А;
  • фен (1 кВт) — 5 А;
  • настольный компьютер (0,5 кВт) — 2,5 А;
  • холодильник (0,4 кВт) — 2 А.

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А.

И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом.

Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала.

Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.

Онлайн расчет мощности тока для однофазной и трехфазной сети

Источник: http://remontnichok.ru/elektrichestvo/raschet-elektricheskogo-toka-po-moshchnosti-formuly-onlayn-raschet-vybor-avtomata

Как рассчитать мощность по току и напряжению?

При проектировании любых электрических цепей выполняется расчет мощности. На его основе производится выбор основных элементов и вычисляется допустимая нагрузка.

Если расчет для цепи постоянного тока не представляет сложности (в соответствии с законом Ома, необходимо умножить силу тока на напряжение – Р=U*I), то с вычислением мощности переменного тока – не все так просто.

Для объяснения потребуется обратиться к основам электротехники, не вдаваясь в подробности, приведем краткое изложение основных тезисов.

Полная мощность и ее составляющие

В цепях переменного тока расчет мощности ведется с учетом законов синусоидальных изменений напряжения и тока. В связи с этим введено понятие полной мощности (S), которая включает в себя две составляющие: реактивную (Q) и активную (P).  Графическое описание этих величин можно сделать через треугольник мощностей (см. рис.1).

Под активной составляющей (Р) подразумевается мощность полезной нагрузки (безвозвратное преобразование электроэнергии в тепло, свет и т.д.). Измеряется данная величина в ваттах (Вт), на бытовом уровне принято вести расчет в киловаттах (кВт), в производственной сфере – мегаваттах (мВт).

Реактивная составляющая (Q) описывает емкостную и индуктивную электронагрузку в цепи переменного тока, единица измерения этой величины Вар.

Рис. 1. Треугольник мощностей (А) и напряжений (В)

В соответствии с графическим представлением, соотношения в треугольнике мощностей можно описать с применением элементарных тригонометрических тождеств, что дает возможность использовать следующие формулы:

  • S = √P2+Q2, – для полной мощности;
  • и Q = U*I*cos⁡ φ , и P = U*I*sin φ  – для реактивной и активной составляющих.

Эти расчеты применимы для однофазной сети (например, бытовой 220 В), для вычисления мощности трехфазной сети (380 В) в формулы необходимо добавить множитель – √3  (при симметричной нагрузке) или суммировать мощности всех фаз (если нагрузка несимметрична).

Для лучшего понимания процесса воздействия составляющих полной мощности давайте рассмотрим «чистое» проявление нагрузки в активном, индуктивном и емкостном виде.

Активная нагрузка

Возьмем гипотетическую схему, в которой используется «чистое» активное сопротивление и соответствующий источник переменного напряжения. Графическое описание работы такой цепи продемонстрировано на рисунке 2, где отображаются основные параметры для определенного временного диапазона (t).

Рисунок 2. Мощность идеальной активной нагрузки

Мы можем увидеть, что напряжение и ток синхронизированы как по фазе, так и частоте, мощность же имеет удвоенную частоту. Обратите внимание, что направление этой величины положительное, и она постоянно возрастает.

Емкостная нагрузка

Как видно на рисунке 3, график  характеристик емкостной нагрузки несколько отличается от активной.

Рисунок 3. График идеальной емкостной нагрузки

Частота колебаний емкостной мощности вдвое превосходит частоту синусоиды изменения напряжения. Что касается суммарного значения этого параметра, в течение одного периода гармоники оно равно нулю.

При этом увеличения энергии (∆W) также не наблюдается. Такой результат указывает, что ее перемещение происходит в обоих направлениях цепи. То есть, когда увеличивается напряжение, происходит накопление заряда в емкости.

При наступлении отрицательного полупериода накопленный заряд разряжается в контур цепи.

В процессе накопления энергии в емкости нагрузки и последующего разряда не производится полезной работы.

Индуктивная нагрузка

Представленный ниже график демонстрирует характер «чистой» индуктивной нагрузки. Как видим, изменилось только направление мощности, что касается наращения, оно равно нулю.

График идеальной емкостной нагрузки

Негативное воздействие реактивной нагрузки

В приведенных выше примерах рассматривались варианты, где присутствует «чистая» реактивная нагрузка. Фактор воздействия активного сопротивления в расчет не принимался.

В таких условиях реактивное воздействие равно нулю, а значит, можно не принимать его во внимание. Как вы понимаете, в реальных условиях такое невозможно.

Даже, если гипотетически такая нагрузка бы существовала, нельзя исключать сопротивление медных или алюминиевых жил кабеля, необходимого для ее подключения к источнику питания.

Реактивная составляющая может проявляться в виде нагрева активных компонентов цепи, например, двигателя, трансформатора, соединительных проводов, питающего кабеля и т.д. На это тратится определенное количество энергии, что приводит к снижению основных характеристик.

Реактивная мощность воздействует на цепь следующим образом:

  • не производит ни какой полезной работы;
  • вызывает серьезные потери и нештатные нагрузки на электроприборы;
  • может спровоцировать возникновение серьезной аварии.

Именно по этому, производя соответствующие вычисления для электроцепи, нельзя исключать фактор влияния индуктивной и емкостной нагрузки и, если необходимо, предусматривать использование технических систем для ее компенсации.

Расчет потребляемой мощности

В быту часто приходится сталкиваться с вычислением потребляемой мощности, например, для проверки допустимой нагрузки на проводку перед подключением ресурсоемкого электропотребителя (кондиционера, бойлера, электрической плиты и т.д.).  Также в таком расчете есть необходимость при выборе защитных автоматов для распределительного щита, через который выполняется подключение квартиры к электроснабжению.

В таких случаях расчет мощности по току и напряжению делать не обязательно, достаточно просуммировать потребляемую энергию всех приборов, которые могут быть включены одновременно. Не связываясь с расчетами, узнать эту величину для каждого устройства можно тремя способами:

  1. обратившись к технической документации устройства;
  2. посмотрев это значение на наклейке задней панели;Потребляемая мощность прибора часто указывается на тыльной стороне
  3. воспользовавшись таблицей, где указано среднее значение потребляемой мощности для бытовых приборов.

Таблица значений средней потребляемой мощности

При расчетах следует учитывать, что пусковая мощность некоторых электроприборов может существенно отличаться от номинальной.

Для бытовых устройств этот параметр практически никогда не указывается в технической документации, поэтому необходимо обратиться к соответствующей таблице, где содержатся средние значения параметров стартовой мощности для различных приборов (желательно выбирать максимальную величину).

Источник: https://www.asutpp.ru/raschet-moshhnosti-po-toku-i-naprjazheniju.html

Как рассчитать мощность по току и напряжению?

Любой из элементов электрической сети является материальным объектом определенной конструкции. Но его особенность состоит в двойственном состоянии. Он может быть как под электрической нагрузкой, так и обесточен.

Если электрического подключения нет, целостности объекта ничто не угрожает.

Но при присоединении к источнику электропитания, то есть при появлении напряжения (U) и электротока, неправильная конструкция элемента электросети может стать для него фатальной, если напряжение и электроток приведут к выделению тепла.

Далее из статьи наши читатели получат информацию о том, как правильно сделать расчет мощности по току и напряжению, чтобы электрические цепи работали исправно и продолжительно.

Отличия мощности при постоянном и переменном напряжении

Наиболее простым получается расчет мощности электрических цепей на постоянном электротоке. Для их участков справедлив закон Ома, в котором задействовано только приложенное U, и сопротивление. Чтобы рассчитать силу тока I, U делится на сопротивление R:

I=U/R ,

причем искомая сила тока именуется амперами.

А поскольку электрическая мощность Р для такого случая — это произведение U и силы электротока, она так же легко, как и электроток, вычисляется по формуле:

P=U*I ,

причем искомая мощность нагрузки именуется ваттами.

Все компоненты этих двух формул характерны для постоянного электротока и называются активными. Напоминаем нашим читателям, что закон Ома, позволяющий выполнить расчет силы тока, весьма многообразен по своему отображению.

Совет

Его формулы учитывают особенности физических процессов, соответствующих природе электричества. А при постоянном и переменном U они протекают существенно отличаясь. Трансформатор на постоянном U — это абсолютно бесполезное устройство.

Также как синхронные и асинхронные движки.

Принцип их функционирования заключен в изменяющемся магнитном поле, создаваемом элементами электрических цепей, обладающими индуктивностью. А такое поле появляется только как следствие переменного U и соответствующего ему переменного тока.

Но электричеству свойственно также и накопление зарядов в элементах электрических цепей. Это явление называется электрической емкостью и лежит в основе конструкции конденсаторов.

Параметры, связанные с индуктивностью и емкостью, называют реактивными.

Расчет мощности в цепях переменного электротока

Поэтому, чтобы определить ток по мощности и напряжению как в обычной электросети 220 В, так и в любой другой, где используется переменное U, потребуется учесть несколько активных и реактивных параметров.

Для этого применяется векторное исчисление. В результате отображение рассчитываемой мощности и U имеет вид треугольника. Две стороны его — это активная и реактивная составляющие, а третья — их сумма.

Например, полная мощность нагрузки S, именуемая вольт-амперами.

Реактивная составляющая называется варами. Зная величины сторон для треугольников мощности и U, можно выполнить расчет тока по мощности и напряжению. Как это сделать, поясняет изображение двух треугольников, показанное далее.

Треугольники мощности и напряжения

Для измерения мощности применяются специальные приборы. Причем их многофункциональных моделей совсем мало.

Это связано с тем, что для постоянного электротока, а также в зависимости от частоты используется соответствующий конструктивный принцип измерителя мощности.

По этой причине прибор, предназначенный для измерения мощности в цепях переменного электротока промышленной частоты, на постоянном электротоке или на повышенной частоте будет показывать результат с неприемлемой погрешностью.

Лабораторный ваттметрЩитовой ваттметр

У большинства наших читателей выполнение того или иного вычисления с использованием величины мощности скорее всего происходит не с измеренным значением, а по паспортным данным соответствующего электроприбора.

При этом можно легко рассчитать ток для определения, например, параметров электропроводки или соединительного шнура. Если U известно, а оно в основном соответствует параметрам электросети, расчет тока по мощности сводится к получению частного от деления мощности и U.

Полученный таким способом расчетный ток определит сечение проводов и тепловые процессы в электрической цепи с электроприбором.  

Обратите внимание

Но вполне закономерен вопрос, как рассчитать ток нагрузки при отсутствии каких-либо сведений о ней? Ответ следующий. Правильный и полный расчет тока нагрузки, запитанной переменным U, возможен на основании измеренных данных.

Они должны быть получены с применением прибора, который замеряет фазовый сдвиг между U и электротоком в цепи. Это фазометр. Полный расчет мощности тока даст активную и реактивную составляющие.

Они обусловлены углом φ, который показан выше на изображениях треугольников.

Лабораторный фазометрЩитовой фазометр

Используем формулы

Этот угол и характеризует фазовый сдвиг в цепях переменного U, содержащих индуктивные и емкостные элементы. Чтобы рассчитывать активные и реактивные составляющие, используются тригонометрические функции, применяющиеся в формулах. Перед тем как посчитать результат по этим формулам, надо, используя калькуляторы или таблицы Брадиса, определить sin φ и cos φ. После этого по формулам

я вычислю искомый параметр электрической цепи.

Но следует учесть то, что каждый из параметров, рассчитанный по этим формулам, из-за U, постоянно изменяющегося по законам гармонических колебаний, может принимать либо мгновенное, либо среднеквадратичное, либо промежуточное значение.

Три формулы, показанные выше, справедливы при среднеквадратичных значениях силы электротока и U. Каждое из двух остальных значений является результатом расчетной процедуры с использованием другой формулы, учитывающей ход времени t:

Но и это еще не все нюансы. Например, для линий электропередачи применяются формулы, в которых фигурируют волновые процессы. И выглядят они по-другому. Но это уже совсем другая история…  

Источник: https://domelectrik.ru/elektrosnabzhenie/bezopasnost/raschet-moshchnosti

Формула мощности электрического тока, расчет по мощности и напряжению

Для того, чтобы обеспечить безопасность при эксплуатации промышленных и бытовых электрических приборов, необходимо правильно вычислить сечение питающей проводки и кабеля. Ошибочный выбор сечения жил кабеля может привести из-за короткого замыкания к возгоранию проводки и к возникновению пожара в здании.

Что такое мощность (Р) электротока

Электрическая мощность является физической величиной, характеризующей скорость преобразования или передачи электрической энергии. Единицей измерения по Международной системе единиц (СИ) является ватт, в нашей стране обозначается Вт, международное обозначение — W.

Что влияет на мощность тока

На мощность (Р) влияет величина силы тока и величина приложенного напряжения. Расчет параметров электроэнергии выполняется еще на стадии проектирования электрических сетей объекта.

Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы электротока используется значения напряжения сети и полной нагрузки электрических приборов.

В соответствии с величиной силы электротока выбирается сечение жил кабелей и проводов.

Отличия мощности при постоянном и переменном напряжении

Ведем обозначения электрических величин, которые приняты в нашей стране:

  • Р − активная мощность, измеряется в ваттах, обозначается Вт;
  • Q − реактивная мощность, измеряется в вольт амперах реактивных, обозначается ВАр;
  • S − полная мощность, измеряется в вольт амперах, обозначается ВА;
  • U − напряжение, измеряется в вольтах, обозначается ВА;
  • I − ток, измеряется в амперах, обозначается А;
  • R − сопротивление, измеряется в омах, обозначается Ом.

Назовем основные отличия P на постоянном и Q на переменном электротоке. Расчет P на постоянном электротоке получается наиболее простым. Для участков электрической цепи справедлив закон Ома. В этом законе задействованы только величина приложенного U (напряжения) и величина сопротивления R.

Расчет S (полной мощности) на переменном электротоке производится несколько сложнее. Кроме P, имеется Q и вводится понятие коэффициента мощности. Алгебраически складывая активную P и реактивную Q, получают общую S.

По какой формуле вычисляется

Расчет силы тока по мощности и напряжению в сети постоянного тока

Для расчета силы I (тока), надо величину U (напряжения) разделить на величину сопротивления.

Расчет силы тока по мощности и напряжению:

I = U ÷ R

Измеряется в амперах.

Для такого случая электрическую Р (активную мощность) можно посчитать как произведение силы электрического I на величину U.

Формула расчета мощности по току и напряжению:

P = U × I

Все компоненты в этих двух формулах характерны для постоянного электротока и их называют активными.

Исходя из этих двух формул, можно вывести также еще две формулы, по которым можно узнавать P:

P = I2 × R

P = U2 ÷ R

Однофазные нагрузки

В однофазных сетях переменного электротока требуется произвести вычисление отдельно для Р и Q нагрузки, затем надо при помощи векторного исчисления их сложить.

В скалярном виде это будет выглядеть так:

S = √P2 + Q2

В результате расчет P, Q, S имеет вид прямоугольного треугольника. Два катета этого треугольника представляют собой P и Q составляющие, а гипотенуза — их алгебраическую сумму.

S измеряется в вольт-амперах (ВА), Q измеряется в вольт-амперах-реактивных (ВАр), Р измеряется в ваттах (Вт).

Зная величины катетов для треугольников, можно рассчитать коэффициент мощности (cos φ). Как это сделать, показано на изображении треугольника.

Расчет в трехфазной сети

Переменный I (ток) отличается от постоянного по всем параметрам, особенно наличием нескольких фаз. Расчет P в трехфазной нагрузке необходим для правильного определения характеристик подключаемой нагрузки. Трехфазные сети широко применяются в связи с удобством эксплуатации и малыми материальными затратами.

Трехфазные цепи могут соединяться двумя способами – звездой и треугольником. На всех схемах фазы обозначают символами А, В, С. Нейтральный провод обозначают символом N.

При соединении звездой различают два вида U (напряжения) – фазное и линейное. Фазное U определяется как U между фазой и нейтральным проводом. Линейное U определяется как U между двумя фазами.

Эти два U связаны между собой соотношением:

UЛ = UФ × √3

Линейные и фазные электротоки при соединении звездой равны друг другу: IЛ = IФ

Форма расчета S при соединении звездой:

S = SA + SB + SC = 3 × U × I

Активная P:

Р = 3 × Uф × Iф × cosφ

Реактивная Q:

Q = √3 × Uф × Iф × sinφ.

При соединении треугольником фазное и линейное U равны друг другу: UЛ = UФ

Линейный I при соединении треугольником определяется по формуле:

IЛ = IФ × √3

Формулы мощности электрического тока при соединении треугольником:

  • S = 3 × Sф = √3 × Uф × Iф;
  • Р = √3 × Uф × Iф × cosφ;
  • Q = √3 × Uф × Iф × sinφ.

Средняя P в активной нагрузке

В электрических сетях P измеряют при помощи специального прибора – ваттметра. Схемы подключения находятся в зависимости от способа подключения нагрузки.

При симметричной нагрузке P измеряется в одной фазе, а полученный результат умножают на три. В случае несимметричной нагрузки для измерения потребуется три прибора.

Параметры P электросети или установки являются важными данными электрического прибора. Данные по потреблению P активного типа передаются за определенный период времени, то есть передается средняя потребляемая P за расчетный период времени.

Подбор номинала автоматического выключателя

Автоматические выключатели защищают электрические аппараты от токов короткого замыкания и перегрузок.

При аварийном режиме они обесточивают защищаемую цепь при помощи теплового или электромагнитного механизма расцепления.

Тепловой расцепитель состоит из биметаллической пластины с различными коэффициентами теплового расширения. Если номинальный ток превышен, пластина изгибается и приводит в действие механизм расцепления.

Важно

У электромагнитного расцепителя имеется соленоид с подвижным сердечником. При превышении заданного I, в катушке увеличивается электромагнитное поле, сердечник втягивается в катушку соленоида, в результате чего срабатывает механизм расцепления.

Минимальный I, при котором тепловой расцепитель должен сработать, устанавливается с помощью регулировочного винта.

Ток срабатывания у электромагнитного расцепителя при коротком замыкании равен произведению установленного срабатывания на номинальный электроток расцепителя.

Видео о законах электротехники

Из следующего видео можно узнать, что такое электричество, мощность электрического тока. Даны примеры практического применения законов электротехники.

Источник: https://vdome.club/materialy/raschety/formula-moschnosti.html

Расчет мощности

Главная > Теория > Расчет мощности

Современная структура общества такова, что на бытовом и промышленном уровне повсеместно используется электроэнергия. Генераторные установки, вырабатывающие электроэнергию, преобразующие подстанции работают для того, чтобы передать ее потребителям на бытовые электрические приборы и промышленные электроустановки.

Общая схема передачи электроэнергии потребителям с учетом мощностей

Что такое мощность электроэнергии

В электросетях, по которым передается энергия, существует ряд основных параметров, которые обязательно учитываются при проектировании и эксплуатации электроустановок.

Одним из таких показателей является электрическая мощность, под этим подразумевается способность электроустановки генерировать, передавать или преобразовывать определенную величину электроэнергии за определенный период времени.

Преобразованием считается процесс изменения электрической энергии в тепло, механические движения или другой вид энергии. Чтобы сделать расчет мощности, надо знать, как минимум, величины тока, напряжения и ряда других параметров.

Расчет тока и напряжения, мощности иногда не делают, а измеряют параметры на месте. Но такая возможность не всегда предоставляется.

Надо знать, как рассчитать мощность, когда цепь обесточена, при проектировании электроустановок, уметь пользоваться таблицей законов Ома и рассчитать силу тока по известным значениям параметров.

Рассчитывать мощность нагрузки и ток нагрузки приходится для того, чтобы правильно выбрать сечение проводов в цепи, величину тока срабатывания для защитных автоматов и других нужд.

Законы Ома наглядно показывают, как посчитать ток по мощности и напряжению

Совет

Физический смысл электрической мощности в цепях переменного и постоянного тока одинаковый, но от условий нагрузки в цепи мощность может выражаться разными соотношениями. Для стандартизации закономерности явлений вводится понятие мгновенное значение, что указывает на зависимость скорости преобразований электроэнергии от фактора времени.

Электрическая мощность – это величина, выражающая скорость преобразования энергии электричества в другой вид энергии, обозначается буквой «Р».

Мгновенное значение электрической мощности

Определение – электрическая мощность тесно связана с другими параметрами цепи, током и напряжением, при изменении величины одного из них изменяются другие. Поэтому показания мощности фиксируются в короткий промежуток времени – ∆t.

Расчет мощности трехфазной сети

Напряжение в данном случае обозначают буквой «U» – это выражает разность потенциалов зарядов, перемещенных электрическим полем из одной точки в другую за промежуток времени ∆t.

Сила тока обозначается буквой «I» – это поток, переносимый магнитным полем зарядов, другими словами заряд, перенесенный во временной интервал ∆t.

Исходя из этих определений, просматривается пропорциональная зависимость между этими параметрами:

Р = UxI.

При расчетах можно учитывать зависимость мощности от сопротивления нагрузки «R». По законам Ома для участка цепи с постоянным током мощность выражается как:

Р = I2xR или P = U2|R.

Если поставить в схему питания амперметр и вольтметр, то не придется думать, как вычислить силу тока.

Обратите внимание! Амперметр ставится последовательно в цепь по отношению к сопротивлению нагрузки, а вольтметр – параллельно.

В качестве источника питания используется аккумулятор, как нагрузка установлен прожектор. В данном случае не делается расчет силы тока, параллельно нагрузке подключен вольтметр, для измерения напряжения в Вольтах. Амперметр подключается последовательно для измерения тока в Амперах. Зная показания напряжения и тока по формулам, показанным выше, легко рассчитывается мощность.

Для участков цепи с переменным током формулы расчетов сложнее – необходимо учитывать характер нагрузки.

Расчеты мощности для электроцепей переменного тока

Переменный ток и напряжение имеют синусоидальный вид, при различных нагрузках происходит смещение фазы между ними на определенный угол. По этой причине направление тока иногда может быть противоположным, от нагрузки к источнику питания.

Это бывает в электродвигателях, когда обмотка начинает генерировать энергию, это негативно сказывается на эффективности работы оборудования, снижается мощность.

При большом количестве потребителей в электросети характер нагрузки имеет смешанный вид, в идеале выделяют три типа нагрузки:

  • Активная нагрузка, ее представляют такие электроприборы, как лампы накаливания, нагревательные тэны, спиральные электроплиты;
  • Емкостная нагрузка – это конденсаторы в оборудовании различного назначения;
  • Индуктивная нагрузка представлена катушками в электродвигателях, обмотках электромагнитов, дросселями и трансформаторами, другими приборами, где ток протекает через обмотки.

Емкостные и индуктивные виды выделяют как реактивную энергию в электросетях. Зная вид нагрузки, расчет потребляемой мощности делается точнее.

Расчет мощности в цепи с активной нагрузкой

Это классический случай в однофазной сети 220 В, в качестве нагрузки можно использовать обычные резисторы. Мощность рассчитывается как произведение действующих значений тока и напряжения, умноженное на соsϕ. В данном случае ϕ – угол смещения между фазами тока и напряжения.

Р = UI cos ϕ

График зависимости мощности по току и напряжению при активной нагрузке

Из графика можно узнать, что колебания тока и напряжения одинаковы по частоте и фазе, мощность всегда положительная с частотой в два раза больше.

Активная электрическая мощность характеризует процесс преобразования в сетях с переменным током энергии в тепло, механические движения, излучение света, в любой вид другой энергии. Измеряется активная нагрузка в Вт, кВт.

Расчет реактивной мощности

Как найти мощность в цепях с индуктивной и емкостной нагрузками? Это делается аналогичным образом. Расчет потребляемой мощности, как и в случае с активной нагрузкой, означает, что действующие напряжение и ток перемножаются, и результат умножается на sin ϕ. Где ϕ – угол сдвига фаз тока и напряжения.

Р = UI sin ϕ

Диаграмма, показывающая взаимосвязь параметров цепи при индуктивной нагрузке

График показывает, что мощность может принимать отрицательные значения, в этот момент энергия отдается в сторону источника питания, фактически она бесполезна и расходуется на нагрев.

Реактивная составляющая энергии характеризует работу нагрузки в виде электронного оборудования, электротехнических схем, моторов с наличием емкостной и индуктивной нагрузки. Единица измерения реактивной мощности при подсчете измеряется в Вар, это (Вольт-Ампер реактивный), обозначается буквой «Q».

Треугольник, отображающий отношение мощностей в сети

Зависимость мощности в цепи переменного тока от реактивной и активной составляющих с учетом угла сдвига фаз хорошо отображается на диаграмме, которую называют треугольником мощностей.

Формула расчета полной мощности обозначается буквой «S»

В этом случае учитывается полный импеданс рассчитываемой мощности электрического тока (комплексное сопротивление нагрузки).

Обратите внимание

Тем, кому вычислением заниматься сложно даже на калькуляторе, можно воспользоваться онлайн калькуляторами на сайте https://www.fxyz.ru с вычислением мощности в цепях с различной нагрузкой.

Вычисляется все мгновенно, достаточно заполнить таблицу с исходными параметрами. Когда такой калькулятор под рукой, я вычислю быстро нужные мне параметры.

Видео

Источник: https://elquanta.ru/teoriya/raschet-moshhnosti.html

Расчет мощности по току и напряжению, схема и таблицы

Чтобы обезопасить себя при работе с бытовыми электроприборами, необходимо в первую очередь правильно вычислить сечение кабеля и проводки. Потому-что если будет неправильно выбран кабель, это может привести к короткому замыканию, из за чего может произойти возгорание в здание, последствия могут быть катастрофическими.

Это правило относиться и к выбору кабеля для электродвигателей.

Расчёт мощности по току и напряжению

Данный расчет происходит по факту мощности, проделывать его необходимо еще до начала проектирование своего жилища (дома, квартиры).

  • Из этого значение  зависят кабеля питающие приборы которые подключены к электросети.
  • По формуле можно вычислить силу тока, для этого понадобиться взять точное напряжение сети и нагрузку питающихся приборов. Ее величина дает нам понять площадь сечение жил.

Если вам известны все электроприборы, которые в будущем должны питаться от сети, тогда можно легко сделать расчеты для схемы электроснабжение. Эти же расчеты можно выполнять и для производственных целей.

Однофазная сеть напряжением 220 вольт

Формула силы тока I (A — амперы):

I=P/U

Где P — это электрическая полная нагрузка (ее обозначение обязательно указывается в техническом паспорте данного устройства), Вт — ватт;

U — напряжение электросети, В (вольт).

В таблице представлены стандартные нагрузки электроприборов и потребляемый ими ток (220 В).

На рисунке вы можете видет схему устройства электроснабжение дома при однофазном подключении к сети 220 вольт.

Схема приборов при однофазном напряжении

Как и показано на рисунке, все потребители должны быть подключены к соответствующим автоматам и счетчику, далее к общему автомату который будет выдерживать общею нагрузку дома. Кабель который будет доводит ток, должен выдерживать нагрузку всех подключенных бытовых приборов.

В таблице ниже показана скрытая проводка при однофазной схеме подключение жилища для подбора кабеля при напряжении 220 вольт.

Как и показано в таблице, сечение жил зависит и от материала из которого изготовлен.

Трёхфазная сеть напряжением 380 В

В трехфазном электроснабжении сила тока рассчитывается по следующей формуле:

I = P /1,73 U

P — потребляемая мощность в ватах;

U — напряжение сети в вольтах.

В техфазной схеме элетропитания 380 В, формула имеет следующий вид:

I = P /657, 4

Если к дому будет проводиться трехфазная сеть 380 В, то схема подключения будет иметь следующий вид.

В таблице ниже представлена схема сечения жил в питающем кабеле при различной нагрузке при трехфазном напряжении 380 В для скрытой проводки.

Для дальнейшего расчета питания в цепях нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электродвигатели;
  • индукционные печи;
  • дроссели приборов освещения;
  • сварочные трансформаторы.

Это явление в обязательном порядке необходимо учитывать при дальнейших расчетах. В более мощных электроприборах нагрузка идет гораздо больше, поэтому в расчетах коэффициент мощности принимают 0,8.

При подсчете нагрузки на бытовые приборы запас мощности нужно брать 5%. Для электросети этот процент становит 20%.

Источник: https://DomStrouSam.ru/raschet-moshhnosti-po-toku-i-napryazheniyu-shema-i-tablitsyi/

Расчет тока по мощности и напряжению

Источник: https://electric-220.ru/news/raschet_toka_po_moshhnosti_i_naprjazheniju/2016-09-29-1074

Расчет мощности электрического тока — формула

Подключение к бытовой или промышленной электрической сети потребителя, мощность которого больше той, на которую рассчитан кабель или провод чревато самыми неприятными, а порой и катастрофическими, последствиями. При правильной организации электропроводки внутри жилого помещения будут постоянно срабатывать автоматические выключатели или перегорать плавкие предохранители (пробки).

Если защита выполнена неправильно или вообще отсутствует, это может привести:

  • к перегоранию питающего провода или кабеля;
  • оплавлению изоляции и короткому замыканию между проводами;
  • перегреву медных или алюминиевых кабельных жил провода и пожару.

Поэтому перед подключение потребителя к электросети желательно знать не только его паспортную электрическую мощность, но и потребляемый от сети ток.

Расчет потребляемой мощности

Формула расчета мощности по току и напряжению знакома еще из школьного курса физики. Расчет мощности электрического тока (в ваттах) для однофазной сети проводится по выражению:

  • в котором U – напряжение в вольтах
  • I – ток в амперах;
  • Cosφ – коэффициент мощности, зависящий от характера нагрузки.

Может возникнуть вопрос – а зачем нужна формула расчета мощности по току, когда ее можно узнать из паспорта подключаемого устройства? Определение электрических параметров, включая мощность и потребляемый ток необходим на стадии проектирования электропроводки. По максимальному току, протекающему в сети определяется сечение провода или кабеля. Для расчета тока по мощности можно использовать преобразованную формулу:

Коэффициент мощности зависит от типа нагрузки (активная или реактивная). При бытовых расчетах его величину рекомендуется принимать равной 0,90…0,95. Однако при подключении электроплит, обогревателей, ламп накаливания, нагрузка которых считается активной этот коэффициент можно считать равным 1.

Вышеприведенные формулы расчета мощности по току и напряжению можно использовать для однофазной сети напряжением 220,0 вольт. Для трехфазной сети они имеют несколько модифицированный вид.

Расчет мощности трехфазных потребителей

Определение потребляемой мощности для трехфазной сети имеет свою специфику. Формула расчёта мощности электрического тока трехфазных бытовых потребителей имеет вид:

а величину тока можно рассчитать по выражению:

Особенности расчета

Вышеприведенные формулы предназначены для упрощенных бытовых расчетов. При определении действующих параметров необходимо учитывать реальное подключение.

Характерный пример – расчет потребляемой мощности от аккумулятора. Так как ток в цепи протекает постоянный, то коэффициент мощности не учитывается, так как характер нагрузки не влияет на потребляемую мощность.

И для активных и реактивных потребителей его значение принимают равным 1,0.

Вторым нюансом, который следует учитывать пи проведении бытовых электрических расчетов – реальное значение напряжения. Не секрет, что в сельской местности сетевое напряжение может колебаться в достаточно широких пределах. Поэтому пи использовании расчетных формул в них необходимо подставлять реальные значения параметров.

Еще сложнее задача расчета трехфазных потребителей. При определении протекающего тока в сети необходимо дополнительно учитывать вид подключения — «звезда» или «треугольник».

Расчет силы тока онлайн калькулятор

(Не целые числа вводим через точку. Например: 0.5)

Источник: https://mydesigninfo.ru/raschet-moshhnosti-elektricheskogo-toka/

Как рассчитать силу тока – практические советы для домашнего электрика

Проводка

10.04.2017

15.7 тыс.

10.5 тыс.

5 мин.

Для подбора кабеля, сечения проводов, выключателей защиты, следует вычислить силу тока. Проводка, автоматы с неверно подобранными показателями опасны: может случиться замыкание и пожар.

Говоря об электроприборах, сети, прежде всего упоминают о напряжении. Его величина указывается в вольтах (В), обозначается U. Показатель напряжения зависит от нескольких факторов:

  • материала проводки;
  • сопротивления прибора;
  • температуры.

Один из главных показателей электричества — напряжение

Различают виды напряжения – постоянное и переменное. Постоянное, если на один конец цепи поступает отрицательный потенциал, на другой – положительный. Самый доступный пример постоянного напряжения – батарейка. Нагрузку подключают, соблюдая полярность, иначе можно повредить устройство. Постоянный ток невозможно без потерь передать на значительные расстояния.

Переменный ток возникает, когда постоянно меняется его полярность. Количество изменений называют частотой, измеряется в герцах. Переменные напряжения возможно передавать очень далеко.

Используют экономически выгодные трехфазные сети: в них минимальные потери электроэнергии. Они выполнены четырьмя проводами: три фазных и нулевой. Если посмотреть на линию электропередач, увидим 4 провода между столбами.

От них к дому подводят два – фазный ток 220 В. Если подключить 4 провода, потребитель получит линейный ток 380 В.

Характеристика электричества не ограничивается напряжением. Важна сила тока в амперах (А), обозначение – латинская I.  В любом месте цепи она одинакова. Для измерения служат амперметр, миллиамперметр, мультиметр. Ток бывает очень большой, тысячи ампер, и маленький – миллионные части ампер. Малую силу измеряют миллиамперами.

Амперметр служит для измерения силы тока

Движение электричества по любому материалу вызывает сопротивление. Оно выражается омами (Ом), обозначается R или r. Сопротивление зависимо от сечения и материала проводника.

Чтобы охарактеризовать сопротивление разных материалов, употребляется термин удельное сопротивление. Медь характеризуется меньшим сопротивлением, чем алюминий: 0,017 и 0,03 Ом соответственно.

Совет

У короткого провода сопротивление меньше, чем у длинного. Толстый провод отличается от толстого меньшим сопротивлением.

Характеристика любого прибора содержит указания мощности (ватты (В) или киловатты (кВт). Мощность обозначают P, зависит от напряжения и тока. Из-за сопротивления проводки энергия частично теряется – от источника требуется ток больше необходимого.

При двух известных величинах всегда можно найти третью. Для вычислений наиболее часто пользуются законом Ома с тремя величинами: силой тока, напряженим, сопротивлением: I=U/R.

Он применяется для цепи с нагрузкой из ТЭНов, лампочек, резисторов, имеющих активное сопротивление.

Если  имеются катушки, конденсаторы, это уже реактивное сопротивление, обозначают X.  Катушки создают индуктивное (XL), конденсаторы – емкостное сопротивление (XC). Сила тока рассчитывается с применением формулы, в основе которой также закон Ома: I=U/X.

Прежде определяют индуктивное и емкостное сопротивления, они вместе составляют реактивное сопротивление (C+L).

Индуктивное вычисляется: XC=1/2πfC. Для расчета емкостного используем формулу XL=2πfL.

Формулы содержат обозначения, требующие объяснения: π=3,14, f – это частота. По ним вычисляется ток, если имеется катушка или конденсатор.

Прокладывая электропроводку, предварительно следует узнать силу тока. Ошибки чреваты неприятностями – проводка, розетки плавятся. Если он фактически превышает расчетный, проводка нагревается, плавится, происходит обрыв или замыкание. Ее приходится менять, но это не самое неприятное – возможен и пожар.

При монтаже проводки необходимо знать силу тока

Обратите внимание

Ток сети для практических потребностей находят, зная мощность приборов: I=P/U, где P – мощность потребителя. В реальности учитывается коэффициент мощности – cos φ. Для однофазной сети: I = P/(U∙cos φ),

трехфазной – I = P/(1,73∙U∙cos φ).

Для одной фазы U принимают 220, для трех – 380. Коэффициент большинства приборов 0,95. Если подключают электродвигатель, сварку, дроссель, коэффициент 0,8. Подставляя 0,95, для однофазной сети выходит:

I = P/209, трехфазной – I = P/624. Если коэффициент 0,8, для двух проводов: I = P/176, для четырех: I = P/526.

Трехфазный ток меньше втрое, нагрузка распределяется поровну между фазами. Подсчитывая нагрузку, предусматривают запас 5%, для двигателей, сварочных агрегатов – 20%.

Приборы иногда используют одновременно. Чтобы вычислить нагрузку, суммируют токи устройств. Подход возможен, если они имеют схожий коэффициент мощности. Для потребителей с разными коэффициентами используют средний показатель. Иногда к трехфазной  системе подключают однофазные и трехфазные изделия. Вычисляя ток, складывают все нагрузки.

Ток, протекающий по проводке, нагревает ее. Степень нагрева зависит от его силы и сечения проводки. Правильно подобранный греется несильно. Если ток имеет большую силу, проводка недостаточное сечение, она сильно нагревается, изоляция плавится, возможен пожар. Для правильного подбора сечения пользуются таблицами ПУЭ.

Сечение провода и сила тока определяют степень нагрева проводки

Предположим, требуется подключить электрокотел 5 кВт. Используем медный трехжильный кабель в рукаве. Проводим вычисления: 5000/220 = 22,7. Подходящее значение в таблице 27 А, сечение 4 мм2, диаметр – 2,3 мм. Сечение всегда выбирают с небольшим запасом для полной гарантии. Теперь есть уверенность, что провода не перегреются, не загорятся.

Для защиты сети пользуются плавкими предохранителями. Они работают так, что при некоторой силе тока предохранитель плавится и разрывает цепь. Поэтому гвоздь или первый попавшийся медный провод вместо предохранителя использовать нельзя, когда-нибудь это приведет к серьезным проблемам. Если нужного предохранителя нет, используют медный провод подходящего диаметра, пользуясь таблицей.

Важно

Плавкие предохранители постепенно уходят, им на смену пришли автоматические выключатели. Выбрать их не так просто, как кажется. Допустим, проводка рассчитана на 22 А, ближайший автомат на 25 А.

Значит, ставить его? Оказывается, нет. Обозначение С25 вовсе не значит, что при 26 амперах он разорвет цепь. Даже если нагрузка превысит значение в полтора раза, он моментально не отключит сеть.

Нагреется и сработает минуты через две.

Ставить нужно автомат меньшего номинала. Ближайший – С16. Он может отключить сеть при 17 А и при 24, и никто не скажет, сколько времени пройдет. На срабатывание влияет много факторов. Устройство имеет две защиты – электромагнитную и тепловую. Электромагнитная защита отключает сеть за 0,2 секунды при значительной перегрузке.

Еще один вид устройств отключения – УЗО. Он лишен тепловой и электромагнитной защиты. Указанный номинал служит, чтобы определять ток, который выдержит УЗО без повреждений. Так что логично после УЗО поставить автомат на максимальный ток. Существуют приборы защиты, представляющие симбиоз автомата с УЗО – дифавтоматы.

Источник: http://obustroen.ru/inghenernye-sistemy/elektrichestvo/provodka/kak-rasschitat-silu-toka.html

Содержание:

Включение потребителей в бытовые или промышленные электрические сети с использованием кабеля меньшей мощности, чем это необходимо, может вызвать серьезные негативные последствия. В первую очередь это приведет к постоянному срабатыванию автоматических выключателей или перегоранию плавких предохранителей.

При отсутствии защиты питающий провод или кабель может перегореть. В результате перегрева изоляция оплавляется, а между проводами возникает короткое замыкание.

Чтобы избежать подобных ситуаций, необходимо заранее выполнить расчет тока по мощности и напряжению, в зависимости от имеющейся однофазной или трехфазной электрической сети.

Для чего нужен расчет тока

Расчет величины тока по мощности и напряжению выполняется еще на стадии проектирования электрических сетей объекта.

Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители.

Важно

Для расчетов силы тока используется значение напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы тока выбирается сечение жил кабелей и проводов.

Если все потребители в доме или квартире известны заранее, то выполнение расчетов не представляет особой сложности. В дальнейшем проведение электромонтажных работ значительно упрощается. Таким же образом проводятся расчеты для кабелей, питающих промышленное оборудование, преимущественно электрические двигатели и другие механизмы.

Расчет тока для однофазной сети

Измерение силы тока производится в амперах. Для расчета мощности и напряжения используется формула I = P/U, в которой P является мощностью или полной электрической нагрузкой, измеряемой в ваттах. Данный параметр обязательно заносится в технический паспорт устройства. U – представляет собой напряжение рассчитываемой сети, измеряемое в вольтах.

Взаимосвязь силы тока и напряжения хорошо просматривается в таблице:

Электрические приборы и оборудование Потребляемая мощность (кВт) Сила тока (А)
Стиральные машины 2,0 – 2,5 9,0 – 11,4
Электрические плиты стационарные 4,5 – 8,5 20,5 – 38,6
Микроволновые печи 0,9 – 1,3 4,1 – 5,9
Посудомоечные машины 2,0 – 2,5 9,0 – 11,4
Холодильники, морозильные камеры 0,14 – 0,3 0,6 – 1,4
Электрический подогрев полов 0,8 – 1,4 3,6 – 6,4
Мясорубка электрическая 1,1 – 1,2 5,0 – 5,5
Чайник электрический 1,8 – 2,0 8,4 – 9,0

Таким образом, взаимосвязь мощности и силы тока дает возможность выполнить предварительные расчеты нагрузок в однофазной сети. Таблица расчета поможет подобрать необходимое сечение провода, в зависимости от параметров.

Диаметры жил проводников (мм) Сечение жил проводников (мм2) Медные жилы Алюминиевые жилы
Сила тока (А) Мощность (кВт) Сила (А) Мощность (кВт)
0,8 0,5 6 1,3
0,98 0,75 10 2,2
1,13 1,0 14 3,1
1,38 1,5 15 3,3 10 2,2
1,6 2,0 19 4,2 14 3,1
1,78 2,5 21 4.6 16 3,5
2,26 4,0 27 5,9 21 4,6
2,76 6,0 34 7,5 26 5,7
3,57 10,0 50 11,0 38 8,4
4,51 16,0 80 17,6 55 12,1
5,64 25,0 100 22,0 65 14,3

Расчет тока для трехфазной сети

В случае использования трехфазного электроснабжения вычисление силы тока производится по формуле: I = P/1,73U, в которой P означает потребляемую мощность, а U – напряжение в трехфазной сети. 1,73 является специальным коэффициентом, применяемым для трехфазных сетей.

Так как напряжение в этом случае составляет 380 вольт, то вся формула будет иметь вид: I = P/657,4.

Точно так же, как и в однофазной сети, диаметр и сечение проводников можно определить с помощью таблицы, отражающей зависимости этих параметров от различных нагрузок.

Диаметры жил проводников (мм) Сечение жил проводников (мм2) Медные жилы Алюминиевые жилы
Сила тока (А) Мощность (кВт) Сила (А) Мощность (кВт)
0,8 0,5 6 2,25
0,98 0,75 10 3,8
1,13 1,0 14 5,3
1,38 1,5 15 5,7 10 3,8
1,6 2,0 19 7,2 14 5,3
1,78 2,5 21 7,9 16 6,0
2,26 4,0 27 10,0 21 7,9
2,76 6,0 34 12,0 26 9,8
3,57 10,0 50 19,0 38 14,0
4,51 16,0 80 30,0 55 20,0
5,64 25,0 100 38,0 65 24,0

В некоторых случаях расчет тока по напряжению и мощности следует проводить с учетом полной реактивной мощности, присутствующей в электродвигателях, сварочном и другом оборудовании. Для таких устройств коэффициент мощности будет равен 0,8.

Как рассчитать мощность тока

Мощность и энергия | Клуб электроники

Энергетика и энергетика | Клуб электроники

Мощность | Рассчитать | Перегрев | Энергия

Следующая страница: AC, DC и электрические сигналы

См. Также: напряжение и ток

Что такое мощность?

Мощность — это скорость использования или поставки энергии:

Мощность измеряется в ваттах (Вт)
Энергия измеряется в джоулях (Дж)
Время измеряется в секундах (с)

Электроника в основном связана с малым количеством энергии, поэтому мощность часто измеряется в милливаттах (мВт), 1 мВт = 0.001W. Например, светодиод потребляет около 40 мВт. а бипер потребляет около 100 мВт, даже лампа, такая как фонарик, потребляет всего около 1 Вт.

Типичная мощность, используемая в электрических цепях сети, намного больше, поэтому эта мощность может быть измеряется в киловаттах (кВт), 1 кВт = 1000 Вт. Например, в обычной сетевой лампе используется 60 Вт, а чайник потребляет около 3 кВт.


Расчет мощности по току и напряжению

Уравнения

Мощность = Ток × Напряжение

Есть три способа написать уравнение для мощности, тока и напряжения:

где:

P = мощность в ваттах (Вт)
V = напряжение в вольтах (В)
I = ток в амперах (A)

или:

P = мощность в милливаттах (мВт)
V = напряжение в вольтах (В)
I = ток в миллиамперах (мА)

Треугольник PIV

Вы можете использовать треугольник PIV, чтобы запомнить эти три уравнения.Используйте его так же, как треугольник закона Ома:

  • Чтобы рассчитать мощность , P : поместите палец на P, это оставляет I V, поэтому уравнение P = I × V
  • Чтобы рассчитать ток , I : положите палец на I, это оставляет P над V, поэтому уравнение I = P / V
  • Для расчета напряжения, В : поместите палец на В, это оставляет P над I, поэтому уравнение V = P / I

Усилитель довольно большой для электроники, поэтому мы часто измеряем ток в миллиамперах (мА), а мощность в милливаттах (мВт).

1 мА = 0,001 А и 1 мВт = 0,001 Вт.


Расчет мощности с использованием сопротивления

Уравнения

По закону Ома V = I × R

мы можем преобразовать P = I × V в:

где:

P = мощность в ваттах (Вт)
I = ток в амперах (A)
R = сопротивление в Ом ()
В = напряжение в вольтах (В)

Треугольники

Для решения этих уравнений также можно использовать треугольники:



Потери мощности и перегрев

Обычно используется электроэнергия, например, зажигание лампы или двигателя.Однако электрическая энергия преобразуется в тепло всякий раз, когда ток проходит через сопротивление, и это может быть проблемой, если оно вызывает перегрев устройства или провода. В электроники эффект обычно незначителен, но если сопротивление низкое (провод или резистора номинального значения, например) ток может быть достаточно большим, чтобы вызвать проблему.

Из уравнения P = I² × R видно, что для данного Сопротивление мощность зависит от тока в квадрате , поэтому удвоение тока даст в 4 раза большую мощность.

Резисторы рассчитаны на максимальную мощность, которую они могут развить в них без повреждений, но номинальная мощность редко указывается в списках деталей, потому что подходят стандартные значения 0,25 Вт или 0,5 Вт. для большинства схем. Дополнительная информация доступна на странице резисторов.

Провода и кабели рассчитаны на максимальный ток, который они могут пропускать без перегрева. У них очень низкое сопротивление, поэтому максимальный ток относительно велик. Для получения дополнительной информации о текущий рейтинг см. на странице кабелей.


Энергия

Количество потребляемой (или подаваемой) энергии зависит от мощности и времени, в течение которого она используется:

Устройство малой мощности, работающее в течение длительного времени, может потреблять больше энергии, чем устройство высокой мощности работает непродолжительное время.

Например:
  • Лампа мощностью 60 Вт, включенная на 8 часов, потребляет 60 Вт × 8 × 3600 с = 1728 кДж.
  • Чайник мощностью 3 кВт, включенный на 5 минут, потребляет 3000 Вт × 5 × 60 с = 900 кДж.

Стандартной единицей измерения энергии является джоуль (Дж), но 1Дж — очень небольшое количество энергии для электросети. поэтому в научной работе иногда используются килоджоуль (кДж) или мегаджоуль (МДж).

Дома мы измеряем электрическую энергию в киловатт-часах (кВтч), которые часто называют просто «единицей». электричества, когда контекст ясен. 1 кВт · ч — это энергия, потребляемая электроприбором мощностью 1 кВт при включении на 1 час:

Например:
  • Лампа мощностью 60 Вт, включенная на 8 часов, потребляет 0,06 кВт × 8 = 0,48 кВт · ч.
  • Чайник мощностью 3 кВт, включенный на 5 минут, потребляет 3 кВт × 5 / 60 = 0,25 кВтч.

Возможно, вам потребуется преобразовать бытовую единицу кВтч в научную единицу энергии, джоуль (Дж):

1 кВтч = 1 кВт × 1 час = 1000 Вт × 3600 с = 3.6MJ


Следующая страница: Сигналы переменного и постоянного тока | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Electric Power — учись.sparkfun.com

Добавлено в избранное Любимый 47

Расчетная мощность

Электроэнергия — это скорость передачи энергии. Он измеряется в джоулях в секунду (Дж / с) — ватт (Вт). Учитывая несколько известных нам основных терминов, связанных с электричеством, как мы можем рассчитать мощность в цепи? Итак, у нас есть очень стандартное измерение, включающее потенциальную энергию — вольты (В), — которые определяются в джоулях на единицу заряда (кулон) (Дж / Кл).Ток, еще один из наших любимых терминов, связанных с электричеством, измеряет поток заряда во времени в амперах (А) — кулонах в секунду (Кл / с). Соедините их вместе и что мы получим ?! Мощность!

Чтобы рассчитать мощность любого конкретного компонента в цепи, умножьте падение напряжения на нем на ток, протекающий через него.

Например,

Ниже представлена ​​простая (хотя и не полностью функциональная) схема: батарея 9 В, подключенная через 10 Ом; резистор.

Как рассчитать мощность на резисторе? Сначала мы должны найти ток, проходящий через него. Достаточно просто … Закон Ома!

Хорошо, 900 мА (0,9 А) проходит через резистор и 9 В. Какая же тогда мощность подается на резистор?

Резистор преобразует электрическую энергию в тепло. Таким образом, эта схема каждую секунду преобразует 8,1 джоулей электрической энергии в тепло.

Расчет мощности в резистивных цепях

Когда дело доходит до расчета мощности в чисто резистивной цепи, знать два из трех значений (напряжение, ток и / или сопротивление) — это все, что вам действительно нужно.

Подставляя закон Ома (V = IR или I = V / R) в наше традиционное уравнение мощности, мы можем создать два новых уравнения. Первый, чисто по напряжению и сопротивлению:

Итак, в нашем предыдущем примере 9V 2 /10 & ohm; (V 2 / R) составляет 8,1 Вт, и нам никогда не нужно рассчитывать ток, протекающий через резистор.

Второе уравнение мощности можно составить исключительно с точки зрения тока и сопротивления:


Почему мы заботимся о падении мощности на резисторе? Или любой другой компонент в этом отношении.Помните, что мощность — это передача энергии от одного типа к другому. Когда эта электрическая энергия, идущая от источника питания, попадает на резистор, энергия превращается в тепло. Возможно, больше тепла, чем может выдержать резистор. Это приводит нас к … номинальной мощности.


Расчет закона Ома с мощностью

В четырех таблицах ниже вы можете ввести два из четырех факторов закона Ома. Это мощность , (P) или (Вт), измеренная в ваттах, напряжение (V) или (E), измеренная в вольт, , ток или сила тока (I), измеренная в ампер, ( ампер, ), и сопротивление (R), измеренное в Ом .Необходимый коэффициент будет рассчитан для вас, когда вы нажмете кнопку «Рассчитать» для этой таблицы.

Хотя это и не является частью первоначальной теории, в более поздние годы мы также относили коэффициент мощности к Ому. Мощность обычно обозначается сокращением (Вт) и измеряется в Вт . Формула, обычно приводимая для мощности:
W = V x I или W = I 2 x R или W = V 2 / R. Другие основные формулы, включающие мощность:
I = W / V или I = (W / R) 2
V = (W x R) 2 или V = W / I
R = V 2 / W или R = W / I 2

Для исходных расчетов закона Ома, щелкните здесь .Чтобы проверить цветовую кодировку резисторов, используйте нашу таблицу цветовых кодов резисторов и калькулятор . Этот преобразователь требует использования браузеров с поддержкой Javascript и соответствующих возможностей.

Коэффициенты закона Ома при мощности

Рассчитать мощность

Вычислить в амперах

Расчет напряжения

Вычислить Ом

Удельное сопротивление (Вт-см) для обычных металлов при комнатной температуре
Алюминий 2.828 х 10 -6
Медь 1,676 x 10 -6
Серебро 1,586 х 10 -6
Золото 2,214 х 10 -6
Вольфрам 5,5 10 x 10 -6

Например, провод калибра 10 — это 2.588 мм в диаметре.
Сопротивление на 1 см толстой медной проволоки составляет
3,186 x 10 -5 Вт / см. Миля этого провода имеет сопротивление 5,13 Вт.

Как легко рассчитать удельную мощность — Даже в голове!

Если вы всегда хотели научиться простому способу расчета плотности мощности — даже без использования нашего калькулятора, даже в уме, это идеальный пост для вас. 2

  • И, наконец, разделите мощность лазера на площадь, чтобы получить плотность мощности
  • Этот расчет может быть немного утомительным и трудоемким, особенно для технических специалистов и полевых инженеров, которые хотят сделать расчет как можно быстрее и проще.

    Как я могу вам помочь?

    Рад, что вы спросили!

    Используя следующую формулу, можно напрямую найти плотность мощности лазерного луча, используя диаметр луча в миллиметрах:

    Вот как выводится это уравнение: мы можем записать выражение для плотности мощности пучка диаметром 1 мм, которое выглядит просто:

    Деление выражения плотности мощности пучка 1 мм — Мощность / π (0. 2 :

    Примечание. Эта формула предполагает, что луч представляет собой луч с плоским верхом, плотность мощности которого одинакова.

    Для гауссова пучка с заданной перетяжкой пучка в мм умножьте эту формулу на два, чтобы получить формулу, приведенную выше (коэффициент умножения обусловлен тем, что для гауссова пучка пиковая мощность в центре вдвое превышает среднюю мощность Плотность пучка. Значение на самом деле ближе к 255, а не к 250, но эта разница тривиальна и вносит только ~ 2% погрешности.Мы используем 250 просто потому, что их легче запомнить и производить в уме, чем 255! )

    energy — Различные формулы для расчета мощности

    Мощность обычно указывается как энергия / время, но на самом деле это немного расплывчато: какая энергия и в какое время?

    Когда мы говорим об энергии, мы либо ссылаемся на систему / физический объект, для которого энергия является свойством, либо мы говорим об обмене энергией между двумя системами.

    Время, когда говорят о мощности, подразумевает процесс, происходящий в течение некоторого промежутка времени; например энергия системы изменяется в течение некоторого времени или, когда она доведена до мгновенного предела, мощность приближается к некоторому значению.

    Уравнение

    $ P = VI $

    предполагает, что существует некоторый путь, по которому проходит ток; ток на пути равен $ I $, а разница напряжений на пути равна $ V $. Ток течет от высокого к низкому напряжению, поэтому мощность $ P $ — это потенциальная энергия движущихся зарядов (т.е.е. текущий) проигрывают, пересекая путь.

    В отсутствие трения / тепла / других сил это привело бы к добавлению кинетической энергии к движущимся зарядам со скоростью $ -P $. Однако: всякий раз, когда мы делаем что-то интересное с электричеством (например, лампочки, компьютеры, запуск автомобиля), эта энергия, добавляемая к зарядам, забирается тем, для чего мы ее используем.

    Это подводит нас к другим вашим уравнениям.

    Если у нас есть резисторный элемент, подчиняющийся закону Ома **, то

    $ V = I R $.2 / R $.

    Теперь: чтобы перейти к другим полезным вопросам, например, сколько энергии потребляет лампочка, мы должны сделать некоторые предположения о том, как работает устройство. Обычно мы предполагаем, что установившееся состояние , то есть ток / напряжение не меняются с течением времени, что означает, что вся энергия, которую получают заряды, расходуется любым устройством, через которое мы пропускаем ток.

    Другими словами, предположение, что мощность из этих формул — это мощность, используемая устройством, обычно безопасно, но только когда речь идет о системах в установившемся режиме.Исключение составляют случаи, когда мы говорим об источнике питания; в этом случае сохранение энергии говорит нам, что энергия, которую получают заряды, должна исходить от источника энергии.

    Вкратце: $ P = VI $ всегда действителен при условии, что вы говорите о мощности, отдаваемой зарядам / взятой от источника питания, а два других уравнения справедливы только для резисторных элементов, которые подчиняются закону Ома (с тем же определение власти). Однако вы можете использовать их для других величин, если вам предоставлены правильные допущения, такие как системы устойчивого состояния.

    ** Обратите внимание, что для выполнения закона Ома не обязательно; сопротивление можно рассматривать как функцию, а не просто постоянное значение, и если вы знаете эту функцию, вы можете безопасно использовать формулы в любое время.

    Калькулятор блока питания

    — Калькулятор мощности блока питания

    Выберите компоненты

    Центральный процессор (ЦП)

    Выберите марку Выберите марку Это поле обязательно к заполнению.Выбрать серию Выбрать серию Это поле обязательно к заполнению.

    Материнская плата

    Выберите материнскую платуATXE-ATXMicro ATXMini-ITXThin Mini-ITXSSI CEBSSI EEBXL ATSВыберите материнскую плату Это поле обязательно к заполнению.

    Графический процессор (GPU)

    Выберите набор микросхем Выберите набор микросхем Выбрать серию Выбрать серию Икс 121

    Оперативная память (RAM)

    Выберите объем памяти 32 ГБ DDR4 16 ГБ DDR48 ГБ DDR44 ГБ DDR432 ГБ DDR 38 ГБ DDR34 ГБ DDR32 ГБ DDR3 Выберите объем памяти Икс 1234561

    Твердотельный накопитель (SSD)

    Выберите твердотельный накопитель Не установлен До 120 ГБ — 256 ГБ 256 ГБ — 512 ГБ 512 ГБ — 1 ТБ 1 ТБ + Выберите твердотельный накопитель Икс 123456781

    Жесткий диск (HDD)

    Выберите жесткий диск Не установлен 5400 об / мин 3.Жесткий диск 5 дюймов, 7200 об / мин, 3,5 дюйма, 10000 об / мин, 2,5 дюйма, 10000 об / мин, 3,5 дюйма, жесткий диск, 15 000 об / мин, 2,5 дюйма, 15 000 об / мин, 3,5 дюйма, HDDВыберите жесткий диск Икс 123456781

    Оптический привод (CD / DVD / Blu-Ray)

    Выберите оптический привод Не установлен Blu-Ray DVD-RWCOMBOCD-RWDVD-ROM CD-ROM Выберите оптический привод

    Рекомендуемая мощность блока питания:

    0 Вт

    ПРИМЕЧАНИЕ. Рекомендуемая мощность блока питания дает вам лишь общее представление о том, что следует учитывать при выборе блока питания.Платам PCI, внешним устройствам, устройствам USB и FireWire, охлаждающим вентиляторам и другим компонентам может потребоваться больше энергии.

    Часто задаваемые вопросы

    Как рассчитать требования к блоку питания?

    Лучший блок питания для вашего ПК — это тот, который обеспечивает нужную мощность для всех компонентов одновременно.Для ручного расчета необходимо умножить суммарный ток всех компонентов на общее напряжение всех компонентов. В результате получается общая мощность, необходимая для сборки вашего ПК. Если вы введете все компоненты сборки вашего ПК в наш калькулятор, он сделает это за вас и предоставит список опций.

    Почему мне следует использовать калькулятор для поиска источника питания?

    Блок питания обеспечивает питание всех компонентов, и если вы установите неправильный блок питания, вы можете повредить компоненты.Правильный блок питания обеспечит все ваши компоненты постоянным количеством энергии, когда они в этом нуждаются.

    Какие самые популярные марки блоков питания я могу купить?

    Как узнать, что блок питания подходит по размеру?

    В каждом корпусе ПК есть место для блока питания, хотя это пространство может отличаться по размеру и форме.Например, корпуса малого форм-фактора не смогут вместить блок питания, предназначенный для корпусов средней или полной башни. Всегда лучше смотреть на размеры корпуса вашего ПК и убедиться, что вы покупаете блок питания, который может поместиться в отведенном для этого месте.

    Где я могу получить новости о блоках питания?

    Как мне узнать, какой блок питания купить?

    Прежде чем вы решите, какой блок питания купить, важно, чтобы вы знали все компоненты, которые в настоящее время есть в вашей сборке, или те, которые вы хотели бы включить.Вот полный список элементов, которые необходимо учитывать при расчете потребностей в источнике питания.

    • Материнская плата — Убедитесь, что вы знаете, какая материнская плата (настольная, серверная, портативная и т. Д.) Установлена ​​в вашей сборке в настоящее время или какой форм-фактор вы хотите использовать в своей новой сборке. Это важный компонент ваших расчетов, потому что почти все в вашей сборке подключается к материнской плате и получает питание от нее.
    • Центральный процессор (ЦП) — Убедитесь, что вы знаете марку, модель или серию и размер сокета.
    • Графический процессор (GPU) — Вам нужно будет учесть фактическую потребляемую мощность и количество дополнительных контактов питания, которые может иметь графический процессор.Это будет 6, 8, 6 + 6, 6 + 8 или 8 + 8 контактов — и это на каждый графический процессор. Поэтому убедитесь, что у вашего блока питания достаточно кабеля для этого. В большинстве блоков питания будет хотя бы один кабель, совместимый с 8-контактным или 6-контактным разъемом.
    • Память (RAM) — Всегда знайте количество карт памяти, которые может поддерживать ваша материнская плата, а также размер (ГБ) каждой из них.
    • Оптический привод — Если ваша сборка ПК включает в себя оптический привод, не забудьте включить его в свои расчеты. Также убедитесь, что вы знаете тип оптического носителя (Blu-ray, CD-ROM и т. Д.) Вашего оптического привода.
    • Жесткие диски (HDD) — Вам необходимо знать размер (дюймы) и число оборотов в минуту (напр.грамм. 7200 об / мин) каждого жесткого диска, который у вас в настоящее время есть в вашей сборке или который вы хотите включить.
    • Твердотельный накопитель (SSD) — Вам необходимо знать размер (ГБ) каждого твердотельного накопителя, который у вас в настоящее время есть в вашей сборке или который вы хотели бы включить. Помните, что иногда их можно прикрепить к материнской плате.
    • Вентиляторы / Периферийные устройства — Вы можете захотеть включить надстройки, такие как звуковая карта или вентиляторы корпуса RGB. Эти устройства также потребляют небольшое количество энергии, поэтому будьте осторожны, округляя мощность ватт для размещения периферийных устройств.

    Что такое сертификация 80 PLUS?

    80 PLUS — это сертификат, который измеряет эффективность источника питания.Производители добровольно отправят свою продукцию в независимую лабораторию для проверки энергоэффективности источника питания при различных нагрузках. На основании результатов блоки питания получают один из 6 уровней сертификации: 80 PLUS, 80 PLUS Bronze, 80 PLUS Silver, 80 PLUS Gold, 80 PLUS Platinum или 80 PLUS Titanium.

    Учебное пособие по электродвигателям постоянного тока

    — Расчеты электродвигателей постоянного тока без сердечника с щетками

    Расчет двигателей для двигателей постоянного тока без сердечника с щеткой

    При выборе бесщеточного двигателя постоянного тока без сердечника для приложения или при разработке прототипа с питанием необходимо учитывать несколько основных принципов физики двигателя, чтобы создать безопасную, хорошо функционирующую и достаточно мощную прецизионную систему привода.В этом документе мы представили некоторые важные методы, формулы и детали расчетов для определения выходной мощности двигателя без сердечника, кривую скорость-крутящий момент двигателя, графики тока и эффективности, а также теоретические расчеты в холодном состоянии, которые оценивают характеристики двигателя.

    Двигатели постоянного тока

    являются преобразователями, поскольку они преобразуют электрическую энергию ( P, , в ) в механическую энергию ( P, , , ). Частное обоих членов соответствует КПД двигателя.Потери на трение и потери в меди приводят к общей потере мощности ( P потеря ) в Джоулях / сек (потери в железе в двигателях постоянного тока без сердечника пренебрежимо малы). Есть дополнительные потери из-за нагрева, но мы обсудим их ниже:

    В физике мощность определяется как скорость выполнения работы. Стандартная метрическая единица измерения мощности — «ватт» Вт. Как рассчитывается мощность? Для линейного движения мощность — это произведение силы и расстояния в единицу времени P = F · (d / t) .Поскольку скорость — это расстояние во времени, уравнение принимает следующий вид: P = F · s . В случае вращательного движения аналогичный расчет мощности представляет собой произведение крутящего момента и углового расстояния в единицу времени или просто произведение крутящего момента и угловой скорости.

    Где:

    P = Мощность, Вт
    M = Крутящий момент в Нм
    F = Сила, Н
    d = Расстояние в м
    t = Время в с
    ω рад = Угловая скорость в рад / с

    Символ, используемый для крутящего момента, обычно представляет собой строчную греческую букву «τ» (тау) или иногда просто букву «T» .Однако, когда он называется «Момент силы», его обычно обозначают буквой «М» .

    В европейской номенклатуре

    часто используется строчная буква « n » для обозначения скорости вокруг оси. Обычно « n » выражается в единицах оборотов в минуту или об / мин.

    При расчете механической мощности важно учитывать единицы измерения. При вычислении мощности, если « n » (скорость) находится в мин. -1 , тогда вы должны преобразовать его в угловую скорость в единицах рад / с .Это достигается путем умножения скорости на коэффициент преобразования единиц 2π / 60 . Кроме того, если « M » (крутящий момент) находится в мНм , то мы должны умножить его на 10 -3 (разделить на 1 000), чтобы преобразовать единицы в Нм для целей расчета.

    Где:

    n = Скорость в мин. -1
    M = Крутящий момент в мНм

    Предположим, что необходимо определить мощность, которую конкретный двигатель 2668W024CR должен выдавать при холодной работе с крутящим моментом 68 мНм при скорости 7 370 мин. -1 .Произведение крутящего момента, скорости и соответствующего коэффициента преобразования показано ниже.

    Расчет начальной требуемой мощности часто используется в качестве предварительного шага при выборе двигателя или мотор-редуктора. Если механическая выходная мощность, необходимая для данного приложения, известна, то можно проверить максимальную или продолжительную номинальную мощность для различных двигателей, чтобы определить, какие двигатели являются возможными кандидатами для использования в данном приложении.

    Ниже приведен метод определения параметров двигателя на примере двигателя постоянного тока без сердечника 2668W024CR.Сначала мы объясним более эмпирический подход, а затем проведем теоретический расчет.

    Одним из часто используемых методов графического построения характеристик двигателя является использование кривых крутящего момента-скорости. Хотя использование кривых крутящий момент-скорость гораздо более распространено в технической литературе для более крупных машин постоянного тока, чем для небольших устройств без сердечника, этот метод применим в любом случае.

    Обычно кривые крутящий момент-скорость генерируются путем построения графиков скорости двигателя, тока двигателя, механической выходной мощности и эффективности в зависимости от крутящего момента двигателя.Следующее обсуждение будет описывать построение набора кривых крутящего момента-скорости для типичного двигателя постоянного тока на основе серии измерений необработанных данных.

    2668W024CR имеет номинальное напряжение 24 В. Если у вас есть несколько основных частей лабораторного оборудования, вы можете измерить кривые крутящий момент-скорость для бессердечникового двигателя постоянного тока серии 2668 CR в заданной рабочей точке.

    Шаг 1. Измерьте основные параметры

    Многие параметры можно получить напрямую с помощью контроллера движения, такого как один из контроллеров движения FAULHABER MC3.Большинство производителей контроллеров предлагают программное обеспечение, такое как FAULHABER Motion Manager, которое включает функцию записи трассировки, которая отображает напряжение, ток, положение, скорость и т. Д. Они также могут предоставить точный снимок работы двигателя с мельчайшими подробностями. Например, семейство контроллеров движения MC3 (MC 5004, MC 5005 и MC 5010) может измерять множество параметров движения. Это, вероятно, самый быстрый метод получения данных для построения кривой крутящего момента-скорости, но это не единственный метод.

    Если контроллер с функцией записи трассировки недоступен, мы также можем использовать некоторое базовое лабораторное оборудование для определения характеристик двигателя в условиях остановки, номинальной нагрузки и холостого хода. Используя источник питания, установленный на 24 В, запустите 2668W024CR без нагрузки и измерьте скорость вращения с помощью бесконтактного тахометра (например, стробоскопа). Кроме того, измерьте ток двигателя в этом состоянии без нагрузки. Токовый пробник идеально подходит для этого измерения, поскольку он не добавляет сопротивления последовательно с работающим двигателем.Используя регулируемую крутящую нагрузку, такую ​​как тормоз для мелких частиц или регулируемый гистерезисный динамометр, нагрузка может быть связана с валом двигателя.

    Теперь увеличьте крутящий момент двигателя точно до точки. где происходит срыв. При остановке измерьте крутящий момент от тормоз и ток двигателя. Ради этого обсуждение, предположим, что муфта не добавляет нагрузки к двигатель и что нагрузка от тормоза не включают неизвестные фрикционные компоненты. Это также полезно в этот момент, чтобы измерить оконечное сопротивление мотор.Измерьте сопротивление, соприкоснувшись с двигателем. клеммы с омметром. Затем раскрутите вал двигателя. и сделайте еще одно измерение. Измерения должны быть очень близки по стоимости. Продолжайте крутить вал и сделайте не менее трех измерений. Это обеспечит что измерения не проводились в точке минимальный контакт на коммутаторе.

    Теперь мы измерили:

    n 0 = скорость холостого хода
    I 0 = ток холостого хода
    M H = крутящий момент при остановке
    R = оконечное сопротивление

    Шаг 2: Постройте график зависимости тока отКрутящий момент и скорость в зависимости от крутящего момента

    Вы можете подготовить график с крутящим моментом двигателя по абсциссе (горизонтальная ось), скоростью по левой ординате (вертикальная ось) и током по правой ординате. Масштабируйте оси на основе измерений, которые вы сделали на первом шаге. Проведите прямую линию от левого начала графика (нулевой крутящий момент и нулевой ток) до тока останова на правой ординате (крутящий момент при останове и ток останова). Эта линия представляет собой график зависимости тока двигателя от крутящего момента двигателя.Наклон этой линии представляет собой постоянную тока k I , которая представляет собой константу пропорциональности для отношения между током двигателя и крутящим моментом двигателя (в единицах тока на единицу крутящего момента или А / мНм). Обратной величиной этому наклону является постоянная крутящего момента k M (в единицах крутящего момента на единицу тока или мНм / А).

    Где:
    k I = Постоянная тока
    k M = Постоянная момента

    Для целей данного обсуждения предполагается, что двигатель не имеет внутреннего трения.На практике момент трения двигателя M R определяется умножением постоянной крутящего момента k M двигателя на измеренный ток холостого хода I 0 . Линия зависимости крутящего момента от скорости и линия зависимости крутящего момента от тока затем начинается не с левой вертикальной оси, а со смещением по горизонтальной оси, равным расчетному моменту трения.

    Где:
    M R = момент трения

    Шаг 3: Построение графика Power vs.Крутящий момент и эффективность в зависимости от крутящего момента

    В большинстве случаев можно добавить две дополнительные вертикальные оси для построения графика зависимости мощности и эффективности от крутящего момента. Вторая вертикальная ось обычно используется для оценки эффективности, а третья вертикальная ось может использоваться для мощности. Для упрощения этого обсуждения КПД в зависимости от крутящего момента и мощность в зависимости от крутящего момента будут нанесены на тот же график, что и графики зависимости скорости от крутящего момента и тока от крутящего момента (пример показан ниже).

    Составьте таблицу механической мощности двигателя в различных точках от момента холостого хода до момента остановки.Поскольку выходная механическая мощность — это просто произведение крутящего момента и скорости с поправочным коэффициентом для единиц (см. Раздел о вычислении начальной требуемой мощности), мощность может быть рассчитана с использованием ранее построенной линии для зависимости скорости от крутящего момента.

    Примерная таблица расчетов для двигателя 2668W024CR показана в таблице 1. Затем на график наносится каждая расчетная точка мощности. Результирующая функция представляет собой параболическую кривую, показанную ниже на Графике 1. Максимальная механическая мощность достигается примерно при половине крутящего момента сваливания.Скорость в этот момент составляет примерно половину скорости холостого хода.

    Создайте таблицу в электронной таблице КПД двигателя в различных точках от скорости холостого хода до крутящего момента при остановке. Приведено напряжение, приложенное к двигателю, и нанесен график силы тока при различных уровнях крутящего момента. Произведение тока двигателя и приложенного напряжения является мощностью, потребляемой двигателем. В каждой точке, выбранной для расчета, КПД двигателя η представляет собой выходную механическую мощность, деленную на потребляемую электрическую мощность.Опять же, примерная таблица для двигателя 2668W024CR показана в Таблице 1, а примерная кривая — на Графике 1. Максимальный КПД достигается примерно при 10% крутящего момента двигателя при остановке.

    Определения сюжета

    • Синий = скорость в зависимости от крутящего момента ( n против M )
    • Красный = ток в зависимости от крутящего момента ( I против M )
    • Зеленый = эффективность в зависимости от крутящего момента ( η или M )
    • Коричневый = мощность в зависимости от крутящего момента ( P, vs. М )

    Характеристики двигателя

    Примечание. Пунктирные линии представляют значения, которые могут быть получены для холодного двигателя (без повышения температуры), однако сплошные линии учитывают влияние магнита и змеевик подогрева на теплом моторе (об этом позже). Обратите внимание, как все четыре сплошных графика изменяются в результате увеличения сопротивления в медных обмотках и ослабления. выходной крутящий момент из-за нагрева. Таким образом, ваши результаты могут немного отличаться в зависимости от того, холодный или теплый ваш двигатель, когда вы строите графики.

    Теоретический расчет параметров двигателя

    Еще одним полезным параметром при выборе двигателя является постоянная двигателя. Правильное использование этой добротности существенно сократит итерационный процесс выбора двигателя постоянного тока. Он просто измеряет внутреннюю способность преобразователя преобразовывать электрическую мощность в механическую.

    Максимальный КПД достигается примерно при 10% крутящего момента двигателя при остановке. Знаменатель называется потерей резистивной мощности. С помощью некоторых алгебраических манипуляций уравнение можно упростить до:

    Имейте в виду, что k m (постоянная двигателя) не следует путать с k M (постоянная крутящего момента).Обратите внимание, что индекс константы двигателя — это строчная буква « m », в то время как индекс постоянной крутящего момента использует заглавную букву « M ».

    Для щеточного или бесщеточного двигателя постоянного тока относительно небольшого размера отношения, которые управляют поведением двигателя в различных обстоятельствах, могут быть выведены из законов физики и характеристик самих двигателей. Правило Кирхгофа по напряжению гласит: «Сумма возрастаний потенциала в контуре цепи должна равняться сумме уменьшений потенциала.Применительно к двигателю постоянного тока, последовательно соединенному с источником питания постоянного тока, правило Кирхгофа может быть выражено следующим образом: «Номинальное напряжение питания от источника питания должно быть равно по величине сумме падений напряжения на сопротивлении обмоток. и обратная ЭДС, генерируемая двигателем ».

    Где:

    U = Электропитание в В
    I = Ток в А
    R = Терминальное сопротивление в Ом
    U E = Противо-ЭДС в В

    Обратная ЭДС, создаваемая двигателем, прямо пропорциональна угловой скорости двигателя.Константа пропорциональности — это постоянная обратной ЭДС двигателя.

    Где:

    ω = Угловая скорость двигателя
    k E = Постоянная обратной ЭДС двигателя

    Следовательно, путем подстановки:

    Постоянная противо-ЭДС двигателя обычно указывается производителем двигателя в В / об / мин или мВ / об / мин. Чтобы получить значимое значение для обратной ЭДС, необходимо указать скорость двигателя в единицах, совместимых с указанной постоянной обратной ЭДС.

    «Сумма возрастаний потенциала в контуре цепи должна равняться сумме уменьшений потенциала».
    (Правило напряжения Кирхгофа)

    Постоянная двигателя зависит от конструкции катушки, силы и направления магнитных линий в воздушном зазоре. Хотя можно показать, что три обычно указанные постоянные двигателя (постоянная противо-ЭДС, постоянная крутящего момента и постоянная скорости) равны, если используются соответствующие единицы, расчет облегчается указанием трех констант в общепринятых единицах.

    Крутящий момент, создаваемый ротором, прямо пропорционален току в обмотках якоря. Константа пропорциональности — это постоянная крутящего момента двигателя.

    Где:

    M м = крутящий момент, развиваемый на двигателе
    k M = постоянная крутящего момента двигателя

    Подставляя это соотношение для получения текущего ресурса:

    Крутящий момент, развиваемый на роторе, равен моменту трения двигателя плюс момент нагрузки (из-за внешней механической нагрузки):

    Где:

    M R = Момент трения двигателя
    M L = Момент нагрузки

    Предполагая, что на клеммы двигателя подается постоянное напряжение, скорость двигателя будет прямо пропорциональна сумме момента трения и момента нагрузки.Константа пропорциональности — это наклон кривой крутящий момент-скорость. Моторные характеристики лучше, когда это значение меньше. Чем круче спад наклона, тем хуже производительность, которую можно ожидать от данного двигателя без сердечника. Это соотношение можно рассчитать по формуле:

    Где:

    Δn = изменение скорости
    ΔM = изменение крутящего момента
    M H = крутящий момент при остановке
    n 0 = скорость холостого хода

    Альтернативный подход к получению этого значение определяется для скорости, n :

    Используя исчисление, мы дифференцируем обе стороны относительно M , что дает:

    Хотя здесь мы не показываем отрицательный знак, это подразумевается что результат приведет к уменьшению (отрицательному) склон.

    Пример расчета теоретического двигателя

    Давайте немного углубимся в теоретические расчеты. Двигатель постоянного тока без сердечника 2668W024CR должен работать с напряжением 24 В на клеммах двигателя и крутящим моментом 68 мНм. Найдите результирующую константу двигателя, скорость двигателя, ток двигателя, КПД двигателя и выходную мощность. Из таблицы данных двигателя видно, что скорость холостого хода двигателя при 24 В составляет 7 800 мин -1 .Если крутящий момент не связан с валом двигателя, двигатель будет работать с этой скоростью.

    Во-первых, давайте получим общее представление о характеристиках двигателя, вычислив постоянную двигателя k m . В этом случае мы получаем константу 28,48 мНм / кв.рт. (Вт).

    Скорость двигателя под нагрузкой — это просто скорость холостого хода за вычетом снижения скорости из-за нагрузки. Константа пропорциональности для отношения между скоростью двигателя и крутящим моментом двигателя — это крутизна зависимости крутящего момента отКривая скорости, заданная делением скорости холостого хода двигателя на крутящий момент при останове. В этом примере мы вычислим снижение скорости (без учета температурных эффектов), вызванное нагрузкой крутящего момента 68 мНм, исключив единицы измерения мНм:

    Теперь через замену:

    В этом случае скорость двигателя под нагрузкой должна быть приблизительно:

    Ток двигателя под нагрузкой складывается из тока холостого хода и тока, возникающего в результате нагрузки.

    Константа пропорциональности тока и крутящего момента нагрузки — это постоянная крутящего момента ( k M ) . Это значение составляет 28,9 мНм / А. Взяв обратную величину, мы получаем постоянную тока k I , которая может помочь нам рассчитать ток при нагрузке. В этом случае нагрузка составляет 68 мНм, а ток, возникающий в результате этой нагрузки (без учета нагрева), приблизительно равен:

    .

    Полный ток двигателя можно приблизительно определить, суммируя это значение с током холостого хода двигателя.В таблице данных указан ток холостого хода двигателя как 78 мА. После округления общий ток будет примерно:

    .

    Выходная механическая мощность двигателя — это просто произведение скорости двигателя и крутящего момента с поправочным коэффициентом для единиц (при необходимости). Следовательно, выходная мощность двигателя будет примерно:

    .

    Подводимая к двигателю механическая мощность является произведением приложенного напряжения и общего тока двигателя в амперах. В этом приложении:

    Поскольку КПД η — это просто выходная мощность, деленная на входную мощность, давайте вычислим ее в нашей рабочей точке:

    Оценка температуры обмотки двигателя во время работы:

    Ток I , протекающий через сопротивление R , приводит к потере мощности в виде тепла I 2 · R .В случае двигателя постоянного тока произведение квадрата полного тока двигателя и сопротивления якоря представляет собой потерю мощности в виде тепла в обмотках якоря. Например, если общий ток двигателя составлял 0,203 А, а сопротивление якоря 14,5 Ом, потери мощности в виде тепла в обмотках составят:

    Тепло, возникающее в результате потерь в катушке I 2 · R , рассеивается за счет теплопроводности через компоненты двигателя и воздушного потока в воздушном зазоре. Легкость, с которой это тепло может рассеиваться в двигателе (или любой системе), определяется тепловым сопротивлением.

    Термическое сопротивление (которое является обратной величиной теплопроводности) показывает, насколько хорошо материал сопротивляется теплопередаче по определенному пути. Производители двигателей обычно указывают способность двигателя рассеивать тепло, предоставляя значения теплового сопротивления R th . Например, алюминиевая пластина с большим поперечным сечением будет иметь очень низкое тепловое сопротивление, тогда как значения для воздуха или вакуума будут значительно выше. В случае двигателей постоянного тока существует тепловой путь от обмоток двигателя к корпусу двигателя и второй тепловой канал между корпусом двигателя и окружающей средой двигателя (окружающий воздух и т. Д.).). Некоторые производители двигателей указывают тепловое сопротивление для каждого из двух тепловых путей, в то время как другие указывают только их сумму в качестве общего теплового сопротивления двигателя. Значения термического сопротивления указаны в увеличении температуры на единицу потери мощности. Общие потери I 2 · R в змеевике (источнике тепла) умножаются на тепловые сопротивления для определения установившейся температуры якоря. Повышение температуры в установившемся режиме двигателя ( T ) определяется по формуле:

    Где:

    ΔT = Изменение температуры в К
    I = Ток через обмотки двигателя в А
    R = Сопротивление обмоток двигателя в Ом
    R th2 = Тепловое сопротивление от обмоток к корпусу в к / Вт
    R th3 = Тепловое сопротивление корпуса к окружающей среде, к / Вт

    Давайте продолжим наш пример, используя двигатель 2668W024CR, работающий с током 2458 А в обмотках двигателя, с сопротивлением якоря 1, 03 Ом, тепловое сопротивление между обмоткой и корпусом составляет 3 к / Вт, а тепловое сопротивление между корпусом и окружающей средой — 8 к / Вт.Повышение температуры обмоток рассчитывается по формуле ниже; мы можем заменить Ploss на I 2 · R :

    Поскольку шкала Кельвина использует то же приращение единиц, что и шкала Цельсия, мы можем просто подставить значение Кельвина, как если бы оно было значением Цельсия. Если предполагается, что температура окружающего воздуха составляет 22 ° C, то конечная температура обмоток двигателя может быть приблизительно равна:

    Где:

    T теплый = Температура обмотки

    Важно убедиться, что конечная температура обмоток не превышает номинальное значение двигателя, указанное в паспорте.В приведенном выше примере максимально допустимая температура обмотки составляет 125 ° C. Поскольку расчетная температура обмотки составляет всего 90,4 ° C, тепловое повреждение обмоток двигателя не должно быть проблемой в этом приложении.

    Можно использовать аналогичные вычисления, чтобы ответить на вопросы другого типа. Например, приложение может потребовать, чтобы двигатель работал с максимальным крутящим моментом, в надежде, что он не будет поврежден из-за перегрева. Предположим, требуется запустить двигатель с максимально возможным крутящим моментом при температуре окружающего воздуха 22 ° C.Дизайнер хочет знать, какой крутящий момент двигатель может безопасно обеспечить без перегрева. Опять же, в техническом описании двигателя постоянного тока без сердечника 2668W024CR указана максимальная температура обмотки 125 ° C. Итак, поскольку температура окружающей среды составляет 22 ° C, максимально допустимое повышение температуры ротора составляет: 125 ° C — 22 ° C = 103 ° C

    Теперь мы можем рассчитать увеличение сопротивления катушки из-за рассеивания тепловой мощности:

    Где:

    α Cu = Температурный коэффициент меди в единицах K -1
    (Обратный Кельвин)

    Таким образом, из-за нагрева катушки и магнита из-за рассеивания мощности от потерь I 2 · R сопротивление катушки увеличилось с 1,03 Ом до 1,44 Ом.Теперь мы можем пересчитать новую постоянную крутящего момента k M , чтобы увидеть влияние повышения температуры на характеристики двигателя:

    Где:

    α M = Температурный коэффициент магнита в единицах K -1
    (Обратный Кельвин)

    Теперь мы пересчитываем новую константу обратной ЭДС k E и наблюдаем за результатами. Из формулы, полученной нами выше:

    Как мы видим, постоянная крутящего момента ослабевает в результате повышения температуры, как и константа обратной ЭДС! Таким образом, сопротивление обмотки двигателя, постоянная крутящего момента и постоянная обратная ЭДС — все это отрицательно сказывается по той простой причине, что они зависят от температуры.

    Мы могли бы продолжить вычисление дополнительных параметров в результате более горячей катушки и магнита, но наилучшие результаты дает выполнение нескольких итераций, что лучше всего выполняется с помощью программного обеспечения для количественного анализа. По мере того, как температура двигателя продолжает расти, каждый из трех параметров будет изменяться таким образом, что ухудшает характеристики двигателя и увеличивает потери мощности. При непрерывной работе двигатель может даже достичь точки «теплового разгона», что потенциально может привести к невозможности ремонта двигателя.Это может произойти, даже если первоначальные расчеты показали приемлемое повышение температуры (с использованием значений R и k M при температуре окружающей среды).

    Обратите внимание, что максимально допустимый ток через обмотки двигателя может быть увеличен за счет уменьшения теплового сопротивления двигателя. Тепловое сопротивление между ротором и корпусом R th2 в первую очередь определяется конструкцией двигателя. Тепловое сопротивление корпуса относительно окружающей среды R th3 можно значительно уменьшить, добавив радиаторы.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *